BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 4960923)

  • 1. Fate of thymine-containing dimers in the deoxyribonucleic acid of ultravioletirradiated Bacillus subtilis.
    Shuster RC
    J Bacteriol; 1967 Mar; 93(3):811-5. PubMed ID: 4960923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores.
    Munakata N; Rupert CS
    J Bacteriol; 1972 Jul; 111(1):192-8. PubMed ID: 4204907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins.
    Setlow B; Setlow P
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):421-3. PubMed ID: 3099295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet sensitivity and photoproducts in spore-like bodies of an excision-repair-deficient and dipicolinic-acid-less strain of Bacillus subtilis.
    Munakata N; Fitz-Jones PC; Young IE
    Can J Microbiol; 1975 Jul; 21(7):1129-32. PubMed ID: 807309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrimidine dimer excision in a Bacillus subtilis Uvr- mutant.
    Hadden CT
    J Bacteriol; 1979 Jul; 139(1):247-55. PubMed ID: 110781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of thymine-containing dimers in the deoxyribonucleic acid of ultraviolet-irradiated mutator T1 Escherichia coli transductants.
    Sideropoulos AS
    Mutat Res; 1976 Jan; 34(1):55-68. PubMed ID: 765804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap-filling repair synthesis induced by ultraviolet light in a Bacillus subtilis Uvr- mutant.
    Hadden CT
    J Bacteriol; 1979 Jul; 139(1):239-46. PubMed ID: 110780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet inactivation and excision-repair in Bacillus subtilis. 3. Sensitized photoinactivation of transforming DNA, and the effect of thymine dimers on differential marker inactivation and differential marker repair.
    Bron S; Venema G
    Mutat Res; 1972 Aug; 15(4):377-93. PubMed ID: 4625592
    [No Abstract]   [Full Text] [Related]  

  • 9. The two major spore DNA repair pathways, nucleotide excision repair and spore photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UV-B but not to solar radiation.
    Xue Y; Nicholson WL
    Appl Environ Microbiol; 1996 Jul; 62(7):2221-7. PubMed ID: 8779559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitory germinative excision repair in Bacillus subtilis.
    Wang TC; Rupert CS
    J Bacteriol; 1977 Mar; 129(3):1313-9. PubMed ID: 403175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-pressure liquid chromatography assay for quantitatively monitoring spore photoproduct repair mediated by spore photoproduct lyase during germination of uv-irradiated Bacillus subtilis spores.
    Sun Y; Palasingam K; Nicholson WL
    Anal Biochem; 1994 Aug; 221(1):61-5. PubMed ID: 7985805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thymine photoproduct formation and inactivation of intact spores of Bacillus subtilis irradiated with short wavelength UV (200-300nm) at atmospheric pressure and in vacuo.
    Lindberg C; Horneck G
    Adv Space Res; 1992; 12(4):275-9. PubMed ID: 11538149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-sensitive recovery of a mutant of Escherichia coli K-12 irradiated with ultraviolet light.
    Shimazu Y; Morimyo M; Suzuki K
    J Bacteriol; 1971 Sep; 107(3):623-32. PubMed ID: 4937778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spore photoproduct (SP) lyase from Bacillus subtilis specifically binds to and cleaves SP (5-thyminyl-5,6-dihydrothymine) but not cyclobutane pyrimidine dimers in UV-irradiated DNA.
    Slieman TA; Rebeil R; Nicholson WL
    J Bacteriol; 2000 Nov; 182(22):6412-7. PubMed ID: 11053385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postreplication repair of deoxyribonucleic acid and daughter strand exchange in uvr- mutants of Bacillus subtilis.
    Dodson LA; Hadden CT
    J Bacteriol; 1980 Nov; 144(2):840-3. PubMed ID: 6776098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excision repair characteristics of recB - res - and uvrC - strains of Escherichia coli.
    Kato T
    J Bacteriol; 1972 Dec; 112(3):1237-46. PubMed ID: 4344920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrimidine dimer excision in surviving and nonsurviving cells of ultraviolet-irradiated cultures of Escherichia coli.
    Schenley RL; Fisher WD; Swenson PA
    J Bacteriol; 1976 May; 126(2):985-9. PubMed ID: 770461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfection enhancement in Bacillus subtilis displays features of a novel DNA repair pathway. I: DNA base and nucleolytic specificity.
    Radany EH; Malanoski G; Ambulos NP; Friedberg EC; Yasbin RE
    Mutat Res; 1997 Aug; 384(2):107-20. PubMed ID: 9298119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ultraviolet photochemistry and photobiology of vegetative cells and spores of Bacillus megaterium.
    Donnellan JE; Stafford RS
    Biophys J; 1968 Jan; 8(1):17-28. PubMed ID: 4966691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreactivation, photoproduct formation, and deoxyribonucleic acid state in ultraviolet-irradiated sporulating cultures of Bacillus cereus.
    Baillie E; Germaine GR; Murrell WG; Ohye DF
    J Bacteriol; 1974 Oct; 120(1):516-23. PubMed ID: 4214215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.