These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 4961096)

  • 21. [Balance of macroergic compounds during the growth of Thiobacillus ferrooxidans].
    Ivanov VN
    Mikrobiologiia; 1986; 55(5):768-74. PubMed ID: 3102905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The biochemistry of Hydrogenomonas. V. Factors affecting autotrophic fixation of carbon dioxide.
    ATKINSON DE; MCFADDEN BA
    Arch Biochem Biophys; 1957 Jan; 66(1):16-22. PubMed ID: 13395522
    [No Abstract]   [Full Text] [Related]  

  • 23. [Effects of Soil Texture on Autotrophic CO
    Wang QY; Wu XH; Zhu ZK; Yuan HZ; Sui FG; Ge TD; Wu JS
    Huan Jing Ke Xue; 2016 Oct; 37(10):3987-3995. PubMed ID: 29964436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Electrontransport system in Hydrogenomonas eutropha strain H16].
    Pfitzner J
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):396-401. PubMed ID: 4145608
    [No Abstract]   [Full Text] [Related]  

  • 25. Organic nutrition of chemolithotrophic bacteria.
    Matin A
    Annu Rev Microbiol; 1978; 32():433-68. PubMed ID: 360973
    [No Abstract]   [Full Text] [Related]  

  • 26. Autotrophic growth of hydrogen bacteria in continuous culture.
    Voytovich JV; Gitelson II; Ponomaryev PI; Sidko FY; Terskov IA; Trubachov IN
    Z Allg Mikrobiol; 1972; 12(1):69-73. PubMed ID: 4625683
    [No Abstract]   [Full Text] [Related]  

  • 27. [Growth characteristics of the sulfur bacteria Thiobacillus 58R and effect of some factors of the growth medium on carbon assimilation].
    Rusinova NG; Zavarzin GA; Romanova AK; Sanzhieva EU; Fel'dshteĭn NM
    Mikrobiologiia; 1971; 40(2):252-7. PubMed ID: 5560551
    [No Abstract]   [Full Text] [Related]  

  • 28. [Carbon metabolism in chemo-autotrophy; assimilation cycle of carbonic anhydride].
    MILHAUD G; AUBERT JP; MILLET J
    C R Hebd Seances Acad Sci; 1956 Jul; 243(1):102-5. PubMed ID: 13343603
    [No Abstract]   [Full Text] [Related]  

  • 29. Response of cbb gene transcription levels of four typical sulfur-oxidizing bacteria to the CO2 concentration and its effect on their carbon fixation efficiency during sulfur oxidation.
    Wang YN; Wang L; Tsang YF; Fu X; Hu J; Li H; Le Y
    Enzyme Microb Technol; 2016 Oct; 92():31-40. PubMed ID: 27542742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Oxidative capacity of Thiobacillus ferrooxidans in relation to the O2 and CO2 content in the surrounding medium].
    Golomzik AI; Mikhaĭlova TL
    Prikl Biokhim Mikrobiol; 1972; 8(1):38-41. PubMed ID: 5086800
    [No Abstract]   [Full Text] [Related]  

  • 31. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid.
    Butler RG; Umbreit WW
    J Bacteriol; 1966 Feb; 91(2):661-6. PubMed ID: 5934496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Characteristics of a continous culture of hydrogen bacteria under conditions of gas limitation].
    Ponomarev PI; Gurevich IuA
    Mikrobiologiia; 1977; 46(1):22-8. PubMed ID: 404510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of nitrogen compounds by Hydrogenomonas eutropha. I. Utilization of uric acid, allantoin, hippuric acid, and creatinine.
    Ammann EC; Reed LL
    Biochim Biophys Acta; 1967 Jun; 141(1):135-43. PubMed ID: 4963807
    [No Abstract]   [Full Text] [Related]  

  • 34. Structural insights into the efficient CO2-reducing activity of an NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA.
    Choe H; Ha JM; Joo JC; Kim H; Yoon HJ; Kim S; Son SH; Gengan RM; Jeon ST; Chang R; Jung KD; Kim YH; Lee HH
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):313-23. PubMed ID: 25664741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The effect of the acidity of the medium on the products of chemosynthesis of thiobacillus].
    Romanova AK; Zavarzin GA; Chekina NG
    Izv Akad Nauk SSSR Biol; 1968; 2():277-82. PubMed ID: 5737736
    [No Abstract]   [Full Text] [Related]  

  • 36. [Routes of incorporation of C14 carbon dioxide into dicarboxylic amino acids during chemosynthesis of Hydrogenomonas eutropha Z-1].
    Romanova AK; Nozhevnikova AN; Vedenina IIa; Doman NG
    Mikrobiologiia; 1970; 39(6):990-5. PubMed ID: 4998105
    [No Abstract]   [Full Text] [Related]  

  • 37. CO2 fixation during protein synthesis from ammonium acetate.
    KORNBERG HL
    Biochim Biophys Acta; 1956 Oct; 22(1):208-10. PubMed ID: 13373876
    [No Abstract]   [Full Text] [Related]  

  • 38. Oxygen requirement of photosynthetic CO2 assimilation.
    Ziem-Hanck U; Heber U
    Biochim Biophys Acta; 1980 Jul; 591(2):266-74. PubMed ID: 6772210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on the gorwth of Thiobacillus ferrooxidans. 3. Influence of uranium, other metal ions and 2:4-dinitrophenol on ferrous iron oxidation and carbon dioxide fixation by cell suspensions.
    Tuovinen OH; Kelly DP
    Arch Mikrobiol; 1974 Feb; 95(2):165-80. PubMed ID: 4815912
    [No Abstract]   [Full Text] [Related]  

  • 40. [Carbon dioxide fixation by a growing population of aquatic bacteria].
    Zolotukhin NV
    Izv Akad Nauk SSSR Biol; 1970; 1():58-63. PubMed ID: 4992503
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.