These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4961303)

  • 1. Biosynthesis of branched-chain fatty acids. V. Microbial stereospecific syntheses of D-12-methyltetradecanoic and D-14-methylhexadecanoic acids.
    Kaneda T
    Biochim Biophys Acta; 1966 Aug; 125(1):43-54. PubMed ID: 4961303
    [No Abstract]   [Full Text] [Related]  

  • 2. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase.
    Willecke K; Pardee AB
    J Biol Chem; 1971 Sep; 246(17):5264-72. PubMed ID: 4999353
    [No Abstract]   [Full Text] [Related]  

  • 3. Nutritional alteration of the fatty acid composition of a thermophilic Bacillus species.
    Daron HH
    J Bacteriol; 1973 Dec; 116(3):1096-9. PubMed ID: 4752936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of branched long-chain fatty acids by species of Bacillus: relative activity of three alpha-keto acid substrates and factors affecting chain length.
    Naik DN; Kaneda T
    Can J Microbiol; 1974 Dec; 20(12):1701-8. PubMed ID: 4155346
    [No Abstract]   [Full Text] [Related]  

  • 5. Biosynthesis of branched-chain fatty acids. IV. Factors affecting relative abundance of fatty acids produced by Bacillus subtilis.
    Kaneda T
    Can J Microbiol; 1966 Jun; 12(3):501-14. PubMed ID: 4960276
    [No Abstract]   [Full Text] [Related]  

  • 6. Biosynthesis of branched long-chain fatty acids from the related short-chain -keto acid substrates by a cell-free system of Bacillus subtilis.
    Kaneda T
    Can J Microbiol; 1973 Jan; 19(1):87-96. PubMed ID: 4405510
    [No Abstract]   [Full Text] [Related]  

  • 7. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures.
    Klein W; Weber MH; Marahiel MA
    J Bacteriol; 1999 Sep; 181(17):5341-9. PubMed ID: 10464205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of branched-chain alpha-keto acids in Bacillus subtilis.
    Goldstein BJ; Zahler SA
    J Bacteriol; 1976 Jul; 127(1):667-70. PubMed ID: 819424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biosynthesis of linear or branched fatty acids, during sporulation of Bacillus subtilis var. Niger. Study by gas radiochromatography].
    Bureau G; Mazliak P
    C R Acad Hebd Seances Acad Sci D; 1971 Jan; 272(1):153-5. PubMed ID: 4994961
    [No Abstract]   [Full Text] [Related]  

  • 10. A SIMPLIFIED METHOD FOR THE DETERMINATION OF ISOLEUCINE AND ITS SIX-CARBON PRECURSORS.
    UZUKA Y; SHIMURA K
    J Biochem; 1964 Dec; 56():611-2. PubMed ID: 14244066
    [No Abstract]   [Full Text] [Related]  

  • 11. [Effect of growth decrease on the metabolism of fatty acids of Bacillus subtilis var. niger].
    Bureau G
    C R Acad Hebd Seances Acad Sci D; 1972 Jan; 274(3):468-71. PubMed ID: 4621930
    [No Abstract]   [Full Text] [Related]  

  • 12. Volatile acid production from threonine, valine, leucine and isoleucine by clostridia.
    Elsden SR; Hilton MG
    Arch Microbiol; 1978 May; 117(2):165-72. PubMed ID: 678022
    [No Abstract]   [Full Text] [Related]  

  • 13. Incorporation of branched-chain C6-fatty acid isomers into the related long-chain fatty acids by growing cells of Bacillus subtilis.
    Kaneda T
    Biochemistry; 1971 Jan; 10(2):340-7. PubMed ID: 4992629
    [No Abstract]   [Full Text] [Related]  

  • 14. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
    Schuster J; Binder S
    Plant Mol Biol; 2005 Jan; 57(2):241-54. PubMed ID: 15821880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of propionylcarnitine in isolated rat liver mitochondria.
    Bohmer T
    Biochim Biophys Acta; 1968 Dec; 164(3):487-97. PubMed ID: 5701694
    [No Abstract]   [Full Text] [Related]  

  • 17. [Biochemistry and genetics of organic acid transport in bacteria].
    Gershanovich VN
    Usp Sovrem Biol; 1975; 79(1):21-32. PubMed ID: 804772
    [No Abstract]   [Full Text] [Related]  

  • 18. NADH-dependent inhibition of branched-chain fatty acid synthesis in Bacillus subtilis.
    Oku H; Fujita K; Nomoto T; Suzuki K; Iwasaki H; Chinen I
    Biosci Biotechnol Biochem; 1998 Apr; 62(4):622-7. PubMed ID: 9614692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addition of branched- and straight-chain volatile fatty acids to purified lamb diets and effects on utilization of certain dietary components.
    Cline TR; Garrigus US; Hatfield EE
    J Anim Sci; 1966 Aug; 25(3):734-9. PubMed ID: 5968668
    [No Abstract]   [Full Text] [Related]  

  • 20. Selective use of L-valine and L-isoleucine for the biosynthesis of branched-chain fatty acids in rat skin.
    Oku H; Onotogi M; Nagata J; Wada K; Chinen I
    Biosci Biotechnol Biochem; 1995 May; 59(5):891-5. PubMed ID: 7787304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.