These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4962201)

  • 1. Binding to ribosomes and inhibitory effect on protein synthesis of the spiramycin antibiotics.
    Vazquez D
    Life Sci; 1967 Apr; 6(8):845-53. PubMed ID: 4962201
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of inhibition of protein synthesis by spiramycin.
    Ahmed A
    Biochim Biophys Acta; 1968 Aug; 166(1):205-17. PubMed ID: 4972349
    [No Abstract]   [Full Text] [Related]  

  • 3. Macrolide resistance in Staphylococcus aureus. Correlation between spiramycin-binding to ribosomes and inhibition of polypeptide synthesis in cell-free system.
    Shimizu M; Saito T; Mitsuhashi S
    Jpn J Microbiol; 1970 May; 14(3):215-9. PubMed ID: 5311073
    [No Abstract]   [Full Text] [Related]  

  • 4. Altered ribosomes in spiramycin-resistant mutants of Bacillus subtilis.
    Ahmed A
    Biochim Biophys Acta; 1968 Aug; 166(1):218-28. PubMed ID: 4972350
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of macrolide antibiotics on the ribosomal peptidyl transferase in cell-free systems derived from Escherichia coli B and erythromycin-resistant muytant of Escherichia coli B.
    Cerná J; Jonák J; Rychlík I
    Biochim Biophys Acta; 1971 Jun; 240(1):109-21. PubMed ID: 4940152
    [No Abstract]   [Full Text] [Related]  

  • 6. Chloramphenicol and protein synthesis in mammalian cells.
    Zelkowitz L; Arimura GK; Yunis AA
    J Lab Clin Med; 1968 Apr; 71(4):596-609. PubMed ID: 4870610
    [No Abstract]   [Full Text] [Related]  

  • 7. Partial removal of bound transfer RNA from polysomes engaged in protein synthesis in vitro after addition of tetracycline.
    Maxwell IH
    Biochim Biophys Acta; 1967 Apr; 138(2):337-46. PubMed ID: 4963397
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of [3H]tetrahydroleucomycin A3 to Escherichia coli ribosomes and the effect of 3"-O-acyl derivatives of leucomycins on the binding.
    Omura S; Tanaka H; Inokoshi J; Sakakibara H; Fujiwara T
    J Antibiot (Tokyo); 1982 Apr; 35(4):491-6. PubMed ID: 7047480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A competitive inhibitor of the GTP reaction in protein synthesis.
    Hershey JW; Monro RE
    J Mol Biol; 1966 Jun; 18(1):68-76. PubMed ID: 5337559
    [No Abstract]   [Full Text] [Related]  

  • 11. Protein turnover in nitrogen starving and shift down cells of Bacillus megaterium.
    Hafiz AH; Chaloupka J
    Z Allg Mikrobiol; 1967; 7(2):151-3. PubMed ID: 4970547
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure-activity relationships among the O-acyl derivatives of leucomycin. Correlation of minimal inhibitory concentrations with binding to Escherichia coli ribosomes.
    Omura S; Nakagawa A; Sakakibara H; Okekawa O; Brandsch R
    J Med Chem; 1977 May; 20(5):732-6. PubMed ID: 404425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deoxyribonucleic acid-dependent protein synthesis in nuclear ribosome system in vitro.
    Naora H
    Biochim Biophys Acta; 1966 Jul; 123(1):151-62. PubMed ID: 5336643
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibitors of protein synthesis at the ribosome level. Studies on their site of action.
    Vazquez D
    Life Sci; 1967 Feb; 6(4):381-6. PubMed ID: 5340250
    [No Abstract]   [Full Text] [Related]  

  • 15. Competition between non-inhibitory antibiotics and inhibitory antibiotics for binding by rat liver mitochondrial ribosomes.
    Towers NR; Kellerman GM; Linnane AW
    Arch Biochem Biophys; 1973 Mar; 155(1):159-66. PubMed ID: 4712444
    [No Abstract]   [Full Text] [Related]  

  • 16. Macrolide resistance in Staphylococcus aureus. Decrease of spiramycin-binding to 50S ribosomal subunit in macrolide resistant strains of staphylococci.
    Shimizu M; Saito T; Mitsuhashi S
    J Antibiot (Tokyo); 1970 Sep; 23(9):467-8. PubMed ID: 5459628
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition by mikamycins of polypeptide synthesis directed by native messengers and synthetic polynucleotides.
    Yamaguchi H; Yoshida Y; Tanaka N
    J Biochem; 1966 Sep; 60(3):246-55. PubMed ID: 5339375
    [No Abstract]   [Full Text] [Related]  

  • 18. The binding of peptidyl-tRNA and acylaminoacyl-tRNA to E. coli ribosomes.
    de Groot N; Fry-Shafrir I; Lapidot Y
    Eur J Biochem; 1969 Apr; 8(4):571-6. PubMed ID: 4894288
    [No Abstract]   [Full Text] [Related]  

  • 19. The nature of ribosomes of spores of Bacillus cereus T. and Bacillus megaterium.
    Idriss JM; Halvorson HO
    Arch Biochem Biophys; 1969 Sep; 133(2):442-53. PubMed ID: 4980591
    [No Abstract]   [Full Text] [Related]  

  • 20. Antibiotics and polyribosomes. II. Some effects of lincomycin, spiramycin, and streptogramin A in vivo.
    Cundliffe E
    Biochemistry; 1969 May; 8(5):2063-6. PubMed ID: 4977581
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.