These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 4963244)

  • 1. Cystamine inhibition of enzyme induction and acetate oxidation in Pseudomonas aeruginosa and reversal by high salt concentrations.
    Bernheim F
    Experientia; 1966 Dec; 22(12):801-2. PubMed ID: 4963244
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of mercuric chloride and certain sulfhydryl compounds on the changes in optical density of suspensions of Pseudomonas aeruginosa in sodium, potassium, and sodium-potassium buffers.
    Bernheim F
    Biochem Pharmacol; 1966 Aug; 15(8):1105-10. PubMed ID: 4963241
    [No Abstract]   [Full Text] [Related]  

  • 3. Thioltransferase can utilize cysteamine as same as glutathione as a reductant during the restoration of cystamine-treated glucose 6-phosphate dehydrogenase activity.
    Terada T
    Biochem Mol Biol Int; 1994 Oct; 34(4):723-7. PubMed ID: 7866298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Inhibition of enzyme induction for oxidation of quaternary compounds by chloramphenicol in Pseudomonas aeruginosa].
    Kleber HP; Aurich H
    Naturwissenschaften; 1966 May; 53(9):234. PubMed ID: 4966147
    [No Abstract]   [Full Text] [Related]  

  • 5. The characterisation of inducible dehydrogenases specific for the oxidation of D-alanine, allohydroxy-D-proline, choline and sarcosine as peripheral membrane proteins in Pseudomonas aeruginosa.
    Bater AJ; Venables WA
    Biochim Biophys Acta; 1977 Jul; 468(2):209-26. PubMed ID: 406917
    [No Abstract]   [Full Text] [Related]  

  • 6. [Role of additional substrates in DDT degradation by cultures of Pseudomonas aeruginosa].
    Mal'tseva OV; Golovleva LA
    Mikrobiologiia; 1985; 54(2):222-6. PubMed ID: 3925302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetate and acetamide mutants of Pseudomonas aeruginosa 8602.
    Skinner AJ; Clarke PH
    J Gen Microbiol; 1968 Feb; 50(2):183-94. PubMed ID: 4966510
    [No Abstract]   [Full Text] [Related]  

  • 8. Pyrimidine catabolism in Pseudomonas aeruginosa.
    Kim S; West TP
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):175-9. PubMed ID: 1903745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characteristics of the key enzyme regulation of peripheral p-xylene metabolism in Pseudomonas aeruginosa].
    Gorlatova NV; Golovleva LA
    Mikrobiologiia; 1981; 50(6):1002-7. PubMed ID: 6799754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteamine, an Endogenous Aminothiol, and Cystamine, the Disulfide Product of Oxidation, Increase Pseudomonas aeruginosa Sensitivity to Reactive Oxygen and Nitrogen Species and Potentiate Therapeutic Antibiotics against Bacterial Infection.
    Fraser-Pitt DJ; Mercer DK; Smith D; Kowalczuk A; Robertson J; Lovie E; Perenyi P; Cole M; Doumith M; Hill RLR; Hopkins KL; Woodford N; O'Neil DA
    Infect Immun; 2018 Jun; 86(6):. PubMed ID: 29581193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetate catabolism in the dissimilatory iron-reducing isolate GS-15.
    Champine JE; Goodwin S
    J Bacteriol; 1991 Apr; 173(8):2704-6. PubMed ID: 1901574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE EFFECT OF PYRUVATE AND ACETATE ON THE RATE OF DECREASE IN OPTICAL DENSITY OF SUSPENSIONS OF PSEUDOMONAS AERUGINOSA IN SODIUM, POTASSIUM OR SODIUM-POTASSIUM PHOSPHATE BUFFERS.
    BERNHEIM F
    J Gen Microbiol; 1964 Feb; 34():327-31. PubMed ID: 14135539
    [No Abstract]   [Full Text] [Related]  

  • 13. The inhibition of enzyme induction and ammonia assimilation in Pseudomonas aeruginosa by sulfhydryl compounds and by cobalt, and its reversal by iron.
    DETURK WE; BERNHEIM F
    Arch Biochem Biophys; 1960 Oct; 90():218-23. PubMed ID: 13722292
    [No Abstract]   [Full Text] [Related]  

  • 14. Cystamine and cysteamine as inhibitors of transglutaminase activity
    Jeitner TM; Pinto JT; Cooper AJL
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30054429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Oxidation of alpha-methylstyrene by Pseudomonas cultures].
    Dzhusupova DB; Baskunov BP; Golovleva LA; Alieva RM; Ilialetdinov AN
    Mikrobiologiia; 1985; 54(1):136-40. PubMed ID: 3925301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Purification and properties of carnitine dehydrogenase from Pseudomonas aeruginosa].
    Aurich H; Kleber HP; Sorger H; Tauchert H
    Eur J Biochem; 1968 Nov; 6(2):196-201. PubMed ID: 4302217
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of thioltransferase on the cystamine-activated fructose 1,6-bisphosphatase by its redox regulation.
    Terada T; Hara T; Yazawa H; Mizoguchi T
    Biochem Mol Biol Int; 1994 Feb; 32(2):239-44. PubMed ID: 8019428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa.
    Hylemon PB; Phibbs PV
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1041-8. PubMed ID: 4626609
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of cystamine on activity and biotransformation of hexobarbital.
    Kozaryn I; Wójciakowa Z
    Arch Immunol Ther Exp (Warsz); 1975; 23(6):837-40. PubMed ID: 1220636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taurine catabolism. III. Evidence for the participation of the glyoxylate cycle.
    Shimamoto G; Berk RS
    Biochim Biophys Acta; 1980 Oct; 632(3):399-407. PubMed ID: 6774766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.