These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 4964724)

  • 1. The action of dipicolinic acid and its chemical analogues on the heat stability of glucose dehydrogenase of Bacillus subtilis spores.
    Hachisuka Y; Tochikubo K; Yokoi Y; Murachi T
    J Biochem; 1967 May; 61(5):659-61. PubMed ID: 4964724
    [No Abstract]   [Full Text] [Related]  

  • 2. Purification and properties of glucose-6-phosphate dehydrogenase from Bacillus subtilis spores.
    Tanahashi T; Tochikubo K; Hachisuka Y
    Jpn J Microbiol; 1976 Aug; 20(4):281-6. PubMed ID: 10455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivative action of ethylenediaminetetraacetic acid or dipicolinic acid on inactive glucose dehydrogenase obtained from heated spores of Bacillus subtilis.
    Hachisuka Y; Tochikubo K
    J Bacteriol; 1971 Aug; 107(2):442-7. PubMed ID: 4329730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of a mutant of Bacillus subtilis deficient in glucose-6-phosphate dehydrogenase and phosphoglucoisomerase.
    Lin JY; Prasad C
    J Gen Microbiol; 1974 Aug; 83(2):419-21. PubMed ID: 4214896
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibitory action of dipicolinic acid on the activation of inactive glucose dehydrogenase from Bacillus subtilis spores.
    Tochikubo K; Yasuda Y; Kozuka S
    Microbiol Immunol; 1987; 31(1):95-100. PubMed ID: 3108632
    [No Abstract]   [Full Text] [Related]  

  • 6. Biosynthesis of dipicolinic acid in Bacillus subtilis.
    Chasin LA; Szulmajster J
    Biochem Biophys Res Commun; 1967 Dec; 29(5):648-54. PubMed ID: 4965659
    [No Abstract]   [Full Text] [Related]  

  • 7. Glucose-6-phosphate dehydrogenase, vegetative and spore Bacillus subtilis.
    Ujita S; Kimura K
    Methods Enzymol; 1982; 89 Pt D():258-61. PubMed ID: 6292660
    [No Abstract]   [Full Text] [Related]  

  • 8. Properties of glucose dehydrogenase from vegetative cells of Bacillus subtilis and effect of dipicolinic acid and its chemical analogues on the enzyme.
    Tochikubo K; Hachisuka Y; Murachi T
    Jpn J Microbiol; 1968 Dec; 12(4):435-40. PubMed ID: 4974279
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of disruption by sonication under different conditions on the activity of glucose dehydrogenase from resting spores of Bacillus subtilis.
    Tochikubo K; Yasuda Y
    Microbiol Immunol; 1983; 27(9):733-48. PubMed ID: 6417460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POSSIBLE INVOLVEMENT OF SPORANGIAL CYTOPLASM AS A BIOSYNTHETIC SITE IN DIPICOLINIC ACID FORMATION BY BACILLUS SUBTILIS.
    KONDO M; TAKEDA Y; YONEDA M
    Biken J; 1964 Dec; 7():153-6. PubMed ID: 14308864
    [No Abstract]   [Full Text] [Related]  

  • 11. The possible involvement of trypsin-like enzymes in germination of spores of Bacillus cereus T and Bacillus subtilis 168.
    Boschwitz H; Gofshtein-Gandman L; Halvorson HO; Keynan A; Milner Y
    J Gen Microbiol; 1991 May; 137(5):1145-53. PubMed ID: 1650815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.
    Setlow P
    J Appl Microbiol; 2006 Sep; 101(3):514-25. PubMed ID: 16907802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of glucose metabolism in Bacillus subtilis. I. Purification of glucose-6-phosphate dehydrogenase from the vegetative cell and its properties in comparison with the spore enzyme.
    Ujita S; Kimura K
    J Biochem; 1975 Jan; 77(1?):197-206. PubMed ID: 236997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyridine-2,6-dicarboxylic acid (dipicolinic acid) formation in Bacillus subtilis. I. Non-enzymatic formation of dipicolinic acid from pyruvate and aspartic semialdehyde.
    Kimura K
    J Biochem; 1974 May; 75(5):961-7. PubMed ID: 4153456
    [No Abstract]   [Full Text] [Related]  

  • 15. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores.
    Balassa G; Milhaud P; Raulet E; Silva MT; Sousa JC
    J Gen Microbiol; 1979 Feb; 110(2):365-79. PubMed ID: 108357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glucose effect in Bacillus subtilis.
    Price VL; Gallant JA
    Eur J Biochem; 1983 Jul; 134(1):105-7. PubMed ID: 6222897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis.
    Bagyan I; Setlow P
    J Bacteriol; 2002 Feb; 184(4):1219-24. PubMed ID: 11807087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective alpha/beta-type small acid-soluble proteins.
    Setlow B; Atluri S; Kitchel R; Koziol-Dube K; Setlow P
    J Bacteriol; 2006 Jun; 188(11):3740-7. PubMed ID: 16707666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies on the biosynthethic site of dipicolinic acid in spore-forming bacteria. (II). Dipicolinic acid synthesis in the subcellular fractions of sporangium].
    Kawasaki C; Kondo M; Sakurai J
    Nihon Saikingaku Zasshi; 1967 Sep; 22(9):505-9. PubMed ID: 4967017
    [No Abstract]   [Full Text] [Related]  

  • 20. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress.
    Cortezzo DE; Koziol-Dube K; Setlow B; Setlow P
    J Appl Microbiol; 2004; 97(4):838-52. PubMed ID: 15357734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.