BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4965659)

  • 1. Biosynthesis of dipicolinic acid in Bacillus subtilis.
    Chasin LA; Szulmajster J
    Biochem Biophys Res Commun; 1967 Dec; 29(5):648-54. PubMed ID: 4965659
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of dipicolinic acid in sporulating Bacillus megaterium.
    Bach ML; Gilvarg C
    J Biol Chem; 1966 Oct; 241(19):4563-4. PubMed ID: 4958818
    [No Abstract]   [Full Text] [Related]  

  • 3. A comparative study of the regulation of nicotinamide-adenine dinucleotide biosynthesis.
    Saxton RE; Rocha V; Rosser RJ; Andreoli AJ; Shimoyama M; Kosaka A; Chandler JL; Gholson RK
    Biochim Biophys Acta; 1968 Feb; 156(1):77-84. PubMed ID: 4296374
    [No Abstract]   [Full Text] [Related]  

  • 4. The relationship of dipicolinate and lysine biosynthesis in Bacillus megaterium.
    Fukuda A; Gilvarg C
    J Biol Chem; 1968 Jul; 243(14):3871-6. PubMed ID: 4969366
    [No Abstract]   [Full Text] [Related]  

  • 5. Pyridine-2,6-dicarboxylic acid (dipicolinic acid) formation in Bacillus subtilis. I. Non-enzymatic formation of dipicolinic acid from pyruvate and aspartic semialdehyde.
    Kimura K
    J Biochem; 1974 May; 75(5):961-7. PubMed ID: 4153456
    [No Abstract]   [Full Text] [Related]  

  • 6. [Studies on the biosynthethic site of dipicolinic acid in spore-forming bacteria. (II). Dipicolinic acid synthesis in the subcellular fractions of sporangium].
    Kawasaki C; Kondo M; Sakurai J
    Nihon Saikingaku Zasshi; 1967 Sep; 22(9):505-9. PubMed ID: 4967017
    [No Abstract]   [Full Text] [Related]  

  • 7. Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile.
    Cowan AE; Olivastro EM; Koppel DE; Loshon CA; Setlow B; Setlow P
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7733-8. PubMed ID: 15126669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CA2+ uptake in an asporogenous mutant strain of Bacillus megaterium.
    Ota A
    Microbios; 1982; 34(137-38):185-96. PubMed ID: 6817036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide.
    Ghosh S; Ramirez-Peralta A; Gaidamakova E; Zhang P; Li YQ; Daly MJ; Setlow P
    J Appl Microbiol; 2011 Sep; 111(3):663-70. PubMed ID: 21714839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose dehydrogenase from Bacillus subtilis expressed in Escherichia coli. I: Purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium.
    Hilt W; Pfleiderer G; Fortnagel P
    Biochim Biophys Acta; 1991 Jan; 1076(2):298-304. PubMed ID: 1900201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric RNA synthesis in vitro: heterologous DNA-enzyme systems; E. coli RNA polymerase.
    Colvill AJ; Kanner LC; Tocchini-Valentini GP; Sarnat MT; Geiduschek EP
    Proc Natl Acad Sci U S A; 1965 May; 53(5):1140-7. PubMed ID: 4958034
    [No Abstract]   [Full Text] [Related]  

  • 12. [The effect of copper compounds on pigment formation in Bacillus subtilis and Bacillus megaterium].
    Shliakhov EN; Burdenko TA; Simonova LL; Buracheva SA
    Mikrobiol Zh (1978); 1985; 47(6):33-6. PubMed ID: 3939837
    [No Abstract]   [Full Text] [Related]  

  • 13. The utilization of magnesium by certain Gram-positive and Gram-negative bacteria.
    Webb M
    J Gen Microbiol; 1966 Jun; 43(3):401-9. PubMed ID: 4960404
    [No Abstract]   [Full Text] [Related]  

  • 14. Dipicolinic acid location in intact spores of Bacillus megaterium.
    Leanz G; Gilvarg C
    J Bacteriol; 1973 Apr; 114(1):455-6. PubMed ID: 4633349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants.
    Rao L; Feeherry FE; Ghosh S; Liao X; Lin X; Zhang P; Li Y; Doona CJ; Setlow P
    Food Microbiol; 2018 Jun; 72():112-127. PubMed ID: 29407388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The action of dipicolinic acid and its chemical analogues on the heat stability of glucose dehydrogenase of Bacillus subtilis spores.
    Hachisuka Y; Tochikubo K; Yokoi Y; Murachi T
    J Biochem; 1967 May; 61(5):659-61. PubMed ID: 4964724
    [No Abstract]   [Full Text] [Related]  

  • 17. POSSIBLE INVOLVEMENT OF SPORANGIAL CYTOPLASM AS A BIOSYNTHETIC SITE IN DIPICOLINIC ACID FORMATION BY BACILLUS SUBTILIS.
    KONDO M; TAKEDA Y; YONEDA M
    Biken J; 1964 Dec; 7():153-6. PubMed ID: 14308864
    [No Abstract]   [Full Text] [Related]  

  • 18. Proteolytic processing of the protease which initiates degradation of small, acid-soluble proteins during germination of Bacillus subtilis spores.
    Sanchez-Salas JL; Setlow P
    J Bacteriol; 1993 May; 175(9):2568-77. PubMed ID: 8478323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of metabolism in dormant spores of Bacillus species by 31P nuclear magnetic resonance analysis of low-molecular-weight compounds.
    Ghosh S; Korza G; Maciejewski M; Setlow P
    J Bacteriol; 2015 Mar; 197(5):992-1001. PubMed ID: 25548246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turnover of the cell wall of Gram-positive bacteria.
    Mauck J; Chan L; Glaser L
    J Biol Chem; 1971 Mar; 246(6):1820-7. PubMed ID: 4993960
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.