These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 4966261)

  • 1. [Use of simplified technic of direct immunofluorescence in sampling airborne microorganisms].
    Mammarella L; Castano P
    Nuovi Ann Ig Microbiol; 1966; 17(4):325-35. PubMed ID: 4966261
    [No Abstract]   [Full Text] [Related]  

  • 2. A system for appraising airborne populations of pollens and spores.
    Magill PL; Lumpkins ED; Arveson JS
    Am Ind Hyg Assoc J; 1968; 29(3):293-8. PubMed ID: 4968726
    [No Abstract]   [Full Text] [Related]  

  • 3. Immunofluorescence analysis of bacillus spores and vegetative cells by flow cytometry.
    Phillips AP; Martin KL
    Cytometry; 1983 Sep; 4(2):123-31. PubMed ID: 6414791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of extraneous particulate matter on airborne bacteria.
    Shreve WB; Wachtel LW
    J Dent Res; 1970; 49(3):589-92. PubMed ID: 4987500
    [No Abstract]   [Full Text] [Related]  

  • 5. A microthread technique for studying the viability of microbes in a simulated airborne state.
    May KR; Druett HA
    J Gen Microbiol; 1968 May; 51(3):353-66. PubMed ID: 4968621
    [No Abstract]   [Full Text] [Related]  

  • 6. Exposure to airborne microorganisms and endotoxin in herb processing plants.
    Dutkiewicz J; Krysińska-Traczyk E; Skórska C; Sitkowska J; Prazmo Z; Golec M
    Ann Agric Environ Med; 2001; 8(2):201-11. PubMed ID: 11748878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BETA-PROPIOLACTONE DECONTAMINATION OF SIMIAN VIRUS-40 AS DETERMINED BY A RAPID FLUORESCENT-ANTIBODY ASSAY.
    LEVINE SI; GOULET NR; LIU OC
    Appl Microbiol; 1965 Jan; 13(1):70-2. PubMed ID: 14264849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Suitability of Bacillus subtilis and Bacillus stearothermophilus spores as test organism bioindicators for detecting superheating of steam].
    Spicher G; Peters J
    Zentralbl Hyg Umweltmed; 1997 Feb; 199(5):462-74. PubMed ID: 9376061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inactivation and removal of airborne Bacillus atrophaeus endospores from air circulation systems using UVC and HEPA filters.
    Luna VA; Cannons AC; Amuso PT; Cattani J
    J Appl Microbiol; 2008 Feb; 104(2):489-98. PubMed ID: 17927759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR.
    Buttner MP; Cruz-Perez P; Stetzenbach LD
    Appl Environ Microbiol; 2001 Jun; 67(6):2564-70. PubMed ID: 11375164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [On the isolation of air microorganisms by means of fine pore filters].
    Petras E
    Arch Mikrobiol; 1966 Nov; 55(2):93-109. PubMed ID: 4966188
    [No Abstract]   [Full Text] [Related]  

  • 12. Microresonator mass sensors for detection of Bacillus anthracis Sterne spores in air and water.
    Davila AP; Jang J; Gupta AK; Walter T; Aronson A; Bashir R
    Biosens Bioelectron; 2007 Jun; 22(12):3028-35. PubMed ID: 17317142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction in number of airborne bacteria by air cleaning devices in a closed space.
    Shreve WB; Wachtel LW; Pelleu GB
    US Navy Med; 1970 Jan; 55(1):34. PubMed ID: 4984148
    [No Abstract]   [Full Text] [Related]  

  • 14. Prevalence and airborne spore levels of Stachybotrys spp. in 200 houses with water incursions in Houston, Texas.
    Kuhn RC; Trimble MW; Hofer V; Lee M; Nassof RS
    Can J Microbiol; 2005 Jan; 51(1):25-8. PubMed ID: 15782231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimizing pathogenic bacteria, including spores, in indoor air.
    Utrup LJ; Werner K; Frey AH
    J Environ Health; 2003 Dec; 66(5):19-26, 29. PubMed ID: 14679721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles.
    Lee BU; Yun SH; Ji JH; Bae GN
    J Microbiol Biotechnol; 2008 Jan; 18(1):176-82. PubMed ID: 18239437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air sampling studies in tropical America (Venezuela). Frequency and periodicity of pollen and spores.
    Hurtado I; Riegles-Goihman M
    Allergol Immunopathol (Madr); 1984; 12(6):449-54. PubMed ID: 6528852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations.
    Adhikari A; Sen MM; Gupta-Bhattacharya S; Chanda S
    Sci Total Environ; 2004 Jun; 326(1-3):123-41. PubMed ID: 15142771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to airborne microorganisms in Polish sawmills.
    Dutkiewicz J; Krysińska-Traczyk E; Prazmo Z; Skoŕska C; Sitkowska J
    Ann Agric Environ Med; 2001; 8(1):71-80. PubMed ID: 11426928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.
    Spicher G; Peters J; Borchers U
    Zentralbl Hyg Umweltmed; 1999 Feb; 201(6):541-53. PubMed ID: 10084207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.