BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 4966972)

  • 1. Oxygen activation by o-diphenols.
    Cilento G; Zinner K
    Natl Cancer Inst Monogr; 1967 Nov; 27():89-95. PubMed ID: 4966972
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxygen activation. II. The effect of catecholamines.
    Cilento G; Zinner K
    Biochim Biophys Acta; 1967 Jul; 143(1):88-92. PubMed ID: 6048864
    [No Abstract]   [Full Text] [Related]  

  • 3. Determination and applications of the molar absorptivity of phenolic adducts with captopril and mesna.
    García-Molina F; Muñoz-Muñoz JL; García-Molina M; Molina-Alarcon M; García-Ruíz PA; Tudela J; Rodríguez-López JN
    J Agric Food Chem; 2009 Feb; 57(4):1143-50. PubMed ID: 19170505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of 4-methylcatechol: implications for the oxidation of catecholamines.
    Li G; Zhang H; Sader F; Vadhavkar N; Njus D
    Biochemistry; 2007 Jun; 46(23):6978-83. PubMed ID: 17503772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for the determination of molar absorptivities of thiol adducts formed from diphenolic substrates of polyphenol oxidase.
    Peñalver MJ; Rodríguez-López JN; García-Molina F; García-Cánovas F; Tudela J
    Anal Biochem; 2002 Oct; 309(2):180-5. PubMed ID: 12413449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interaction of diphenols with polyphenol oxidase. Molecular determinants of substrate/inhibitor specificity.
    Kanade SR; Suhas VL; Chandra N; Gowda LR
    FEBS J; 2007 Aug; 274(16):4177-87. PubMed ID: 17651437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The alleged antithiamine activity of o-diphenols: an artefact of oxygen in the thiochrome method?
    Horman I; Brambilla E
    Int J Vitam Nutr Res; 1982; 52(2):134-42. PubMed ID: 7129794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dinuclear and mononuclear manganese(IV)-radical complexes and their catalytic catecholase activity.
    Mukherjee S; Weyhermüller T; Bothe E; Wieghardt K; Chaudhuri P
    Dalton Trans; 2004 Nov; (22):3842-53. PubMed ID: 15540128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic study of p-cresol oxidation by quince fruit polyphenol oxidase.
    Orenes-Piñero E; García-Carmona F; Sánchez-Ferrer A
    J Agric Food Chem; 2005 Feb; 53(4):1196-200. PubMed ID: 15713040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of catechol production by membrane-immobilized polyphenol oxidase: a modeling approach.
    Boshoff A; Burton MH; Burton SG
    Biotechnol Bioeng; 2003 Jul; 83(1):1-7. PubMed ID: 12740927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [On the photo-oxidation of hydroquinones and on a latent polyphenol oxidase in chloroplasts].
    TREBST A; WAGNER S
    Z Naturforsch B; 1962 Jun; 17B():396-400. PubMed ID: 14039798
    [No Abstract]   [Full Text] [Related]  

  • 12. [Indirect oxidation of reducing substances by polyphenoloxidase; oxidation of hydroquinone and monohydroxyphenols].
    KERTESZ D; AZZOPARDI O
    Biochim Biophys Acta; 1962 Oct; 64():149-52. PubMed ID: 14032116
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of β-cyclodextrin on intra and intermolecular Michael addition of some catechol derivatives.
    Khalafi L; Rafiee M; Fathi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():695-701. PubMed ID: 24096065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases.
    Sanchez-Amat A; Solano F
    Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Coupled oxidation of hydroquinone and ascorbic acid by polyphenoloxidase].
    LEGRAND G; NEUMANN J; LEHONGRE G
    C R Hebd Seances Acad Sci; 1961 Mar; 252():2023-5. PubMed ID: 13760417
    [No Abstract]   [Full Text] [Related]  

  • 16. [Determination of organic substances by permanganate oxidation. XII. Oxidation of dihydroxybenzenes and other phenolic substances].
    Berka A; Záveský Z
    Cesk Farm; 1970 Nov; 19(9):329-31. PubMed ID: 5493878
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of diphenols upon the autoxiation of oxyhemoglobin and oxymyoglobin.
    Augusto O; Cilento G
    Arch Biochem Biophys; 1975 Jun; 168(2):549-56. PubMed ID: 1169917
    [No Abstract]   [Full Text] [Related]  

  • 18. Oxidation of phenols by cells and cell-free enzymes from Candida tropicalis.
    Neujahr HY; Lindsjö S; Varga JM
    Antonie Van Leeuwenhoek; 1974; 40(2):209-16. PubMed ID: 4209029
    [No Abstract]   [Full Text] [Related]  

  • 19. Nephrotoxicity and molecular structure.
    Calder IC; Williams PJ; Woods RA; Funder CC; Green CR; Ham KN; Tange JD
    Xenobiotica; 1975 May; 5(5):303-7. PubMed ID: 1154805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Oxidation of hydroxylated aromatic compounds with tyrosinase].
    Beyer C
    Dermatol Monatsschr; 1983; 169(11):711-4. PubMed ID: 6420210
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.