These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44 related articles for article (PubMed ID: 4967017)
1. [Studies on the biosynthethic site of dipicolinic acid in spore-forming bacteria. (II). Dipicolinic acid synthesis in the subcellular fractions of sporangium]. Kawasaki C; Kondo M; Sakurai J Nihon Saikingaku Zasshi; 1967 Sep; 22(9):505-9. PubMed ID: 4967017 [No Abstract] [Full Text] [Related]
2. [Biosynthesis and accumulation of dipicolinic acid in spore-forming bacteria. 2. Isolation of an active compound catalyzing the synthesis of dipicolinic acid from the diketopimelate-NH3 complex]. Sakurai J; Miki J; Konishi T; Kondo M Nihon Saikingaku Zasshi; 1972 Nov; 27(6):791-4. PubMed ID: 4199419 [No Abstract] [Full Text] [Related]
3. Biosynthesis of dipicolinic acid in Bacillus subtilis. Chasin LA; Szulmajster J Biochem Biophys Res Commun; 1967 Dec; 29(5):648-54. PubMed ID: 4965659 [No Abstract] [Full Text] [Related]
4. [Studies on the site of biosynthesis dipicolinic acid in bacterial spore-formers. 1. Its intracellular distribution during sporulation]. Kawasaki C; Kondo M; Nishihara T Nihon Saikingaku Zasshi; 1967 Aug; 22(8):463-7. PubMed ID: 4966559 [No Abstract] [Full Text] [Related]
5. [Studies on the mechanism of biosynthesis and accumulation of dipicolinic acid in spore-forming bacteria. I. Physical and chemical properties of an active fraction catalyzing synthesis of dipicolinic acid from the diketopimelate-NH3 complex]. Kawasaki C; Sakurai J; Kondo M Nihon Saikingaku Zasshi; 1968 Nov; 23(11):772-6. PubMed ID: 4975434 [No Abstract] [Full Text] [Related]
7. POSSIBLE INVOLVEMENT OF SPORANGIAL CYTOPLASM AS A BIOSYNTHETIC SITE IN DIPICOLINIC ACID FORMATION BY BACILLUS SUBTILIS. KONDO M; TAKEDA Y; YONEDA M Biken J; 1964 Dec; 7():153-6. PubMed ID: 14308864 [No Abstract] [Full Text] [Related]
8. Monitoring the kinetics of uptake of a nucleic acid dye during the germination of single spores of Bacillus species. Kong L; Zhang P; Yu J; Setlow P; Li YQ Anal Chem; 2010 Oct; 82(20):8717-24. PubMed ID: 20873796 [TBL] [Abstract][Full Text] [Related]
9. Pyridine-2,6-dicarboxylic acid (dipicolinic acid) formation in Bacillus subtilis. I. Non-enzymatic formation of dipicolinic acid from pyruvate and aspartic semialdehyde. Kimura K J Biochem; 1974 May; 75(5):961-7. PubMed ID: 4153456 [No Abstract] [Full Text] [Related]
10. Studies of the release of small molecules during pressure germination of spores of Bacillus subtilis. Vepachedu VR; Hirneisen K; Hoover DG; Setlow P Lett Appl Microbiol; 2007 Sep; 45(3):342-8. PubMed ID: 17718850 [TBL] [Abstract][Full Text] [Related]
11. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress. Cortezzo DE; Koziol-Dube K; Setlow B; Setlow P J Appl Microbiol; 2004; 97(4):838-52. PubMed ID: 15357734 [TBL] [Abstract][Full Text] [Related]
12. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Setlow P J Appl Microbiol; 2006 Sep; 101(3):514-25. PubMed ID: 16907802 [TBL] [Abstract][Full Text] [Related]
13. Effect of microwave radiation on Bacillus subtilis spores. Celandroni F; Longo I; Tosoratti N; Giannessi F; Ghelardi E; Salvetti S; Baggiani A; Senesi S J Appl Microbiol; 2004; 97(6):1220-7. PubMed ID: 15546413 [TBL] [Abstract][Full Text] [Related]
14. Analysis of interactions between nutrient germinant receptors and SpoVA proteins of Bacillus subtilis spores. Vepachedu VR; Setlow P FEMS Microbiol Lett; 2007 Sep; 274(1):42-7. PubMed ID: 17573930 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of Bacillus subtilis spore killing by and resistance to an acidic Fe-EDTA-iodide-ethanol formulation. Shapiro MP; Setlow P J Appl Microbiol; 2006 Apr; 100(4):746-53. PubMed ID: 16553729 [TBL] [Abstract][Full Text] [Related]
16. I will survive: DNA protection in bacterial spores. Setlow P Trends Microbiol; 2007 Apr; 15(4):172-80. PubMed ID: 17336071 [TBL] [Abstract][Full Text] [Related]
17. Fourier transform infrared reflectance microspectroscopy study of Bacillus subtilis engineered without dipicolinic acid: the contribution of calcium dipicolinate to the mid-infrared absorbance of Bacillus subtilis endospores. Perkins DL; Lovell CR; Bronk BV; Setlow B; Setlow P; Myrick ML Appl Spectrosc; 2005 Jul; 59(7):893-6. PubMed ID: 16053560 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes. Roth S; Feichtinger J; Hertel C J Appl Microbiol; 2010 Feb; 108(2):521-31. PubMed ID: 19659696 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucoside by germinating and outgrowing spores of Bacillus species. Setlow B; Cabrera-Martinez RM; Setlow P J Appl Microbiol; 2004; 96(6):1245-55. PubMed ID: 15139916 [TBL] [Abstract][Full Text] [Related]
20. Killing of spores of Bacillus subtilis by tert-butyl hydroperoxide plus a TAML activator. Paul M; Setlow B; Setlow P J Appl Microbiol; 2007 Apr; 102(4):954-62. PubMed ID: 17381738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]