These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 496748)

  • 1. Scanning and transmission electron microscopy of the blood-bubble interface in decompressed rats.
    Lehto VP; Laitinen LA
    Aviat Space Environ Med; 1979 Aug; 50(8):803-7. PubMed ID: 496748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium red staining of blood-bubble interface in acute decompression sickness in rat.
    Lehto VP; Kantola I; Tervo T; Laitinen LA
    Undersea Biomed Res; 1981 Jun; 8(2):101-11. PubMed ID: 6168082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission and scanning electron microscopy of N2 microbubble-activated human platelets in vitro.
    Thorsen T; Dalen H; Bjerkvig R; Holmsen H
    Undersea Biomed Res; 1987 Jan; 14(1):45-58. PubMed ID: 3810992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubbles and hematologic alterations in intracranial veins during experimental decompression sickness.
    Lehtosalo J; Tervo T; Laitinen LA
    Acta Neuropathol; 1983; 59(2):139-44. PubMed ID: 6837275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between gas bubbles and components of the blood: implications in decompression sickness.
    Philp RB; Inwood MJ; Warren BA
    Aerosp Med; 1972 Sep; 43(9):946-53. PubMed ID: 4116740
    [No Abstract]   [Full Text] [Related]  

  • 6. Initial bone matrix formation at the hydroxyapatite interface in vivo.
    de Bruijn JD; van Blitterswijk CA; Davies JE
    J Biomed Mater Res; 1995 Jan; 29(1):89-99. PubMed ID: 7713963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of intravascular bubble nucleation in dead rats.
    Lee YC; Wu YC; Gerth WA; Vann RD
    Undersea Hyperb Med; 1993 Dec; 20(4):289-96. PubMed ID: 8286983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ultrastructure of the bone-hydroxyapatite interface in vitro.
    de Bruijn JD; Klein CP; de Groot K; van Blitterswijk CA
    J Biomed Mater Res; 1992 Oct; 26(10):1365-82. PubMed ID: 1331114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolated rat alveolar type II cells protrude intracellular lamellar bodies by forming bubble-like structures during surfactant secretion.
    Ogasawara R; Yoshida Y; Tohyama K; Satoh Y; Suwabe A
    Cell Tissue Res; 2009 Feb; 335(2):397-405. PubMed ID: 19023598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New aspects of microvascular corrosion casting: a scanning, transmission electron, and high-resolution intravital video microscopic study.
    Aharinejad S; MacDonald IC; MacKay CE; Mason-Savas A
    Microsc Res Tech; 1993 Dec; 26(6):473-88. PubMed ID: 8305725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conventional and high resolution scanning electron microscopy of biological sectioned material.
    Scala C; Cenacchi G; Preda P; Vici M; Apkarian RP; Pasquinelli G
    Scanning Microsc; 1991 Mar; 5(1):135-44; discussion 144-5. PubMed ID: 2052919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in blood enzyme activity and hematology of rats with decompression sickness.
    Freeman DJ; Philp RB
    Aviat Space Environ Med; 1976 Sep; 47(9):945-9. PubMed ID: 971172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and movement of membrane-associated platelet glycoproteins: use of colloidal gold with correlative video-enhanced light microscopy, low-voltage high-resolution scanning electron microscopy, and high-voltage transmission electron microscopy.
    Albrecht RM; Goodman SL; Simmons SR
    Am J Anat; 1989; 185(2-3):149-64. PubMed ID: 2773810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures.
    Nanci A; Zalzal S; Gotoh Y; McKee MD
    Microsc Res Tech; 1996 Feb; 33(2):214-31. PubMed ID: 8845520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physics of bubble formation and growth.
    Buckles RG
    Aerosp Med; 1968 Oct; 39(10):1062-9. PubMed ID: 5678079
    [No Abstract]   [Full Text] [Related]  

  • 16. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy.
    Neo M; Kotani S; Fujita Y; Nakamura T; Yamamuro T; Bando Y; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1992 Feb; 26(2):255-67. PubMed ID: 1569117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recompression during decompression and effects on bubble formation in the pig.
    Møllerløkken A; Gutvik C; Berge VJ; Jørgensen A; Løset A; Brubakk AO
    Aviat Space Environ Med; 2007 Jun; 78(6):557-60. PubMed ID: 17571654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased oxygen before and during decompression reduces bubble formation in rats.
    Skogland S; Stuhr LE; Sundland H; Marstein S; Hope A
    Undersea Hyperb Med; 2003; 30(1):37-46. PubMed ID: 12841607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for scanning and transmission electron microscopy of normal and damaged gram-negative bacteria.
    Fuglesang JE; Namork E; Fordan B; Johansen BV
    NIPH Ann; 1980 Dec; 3(2):133-9. PubMed ID: 7012686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission and scanning electron microscopic studies on endothelial cells in macular corneal dystrophy.
    Hori S; Tanishima T
    Jpn J Ophthalmol; 1982; 26(2):190-8. PubMed ID: 6752503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.