These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 4967877)
1. [Damped oscillations in the synthesis of carnitine dehydrogenase by Pseudomonas aeruginosa]. Kleber HP; Aurich H Hoppe Seylers Z Physiol Chem; 1967 Dec; 348(12):1727-9. PubMed ID: 4967877 [No Abstract] [Full Text] [Related]
2. [Repression of the malic enzyme by carnitine metabolite in Pseudomonas aeruginosa]. Kleber HP Acta Biol Med Ger; 1969; 23(1):29-36. PubMed ID: 4984838 [No Abstract] [Full Text] [Related]
3. Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt. Velasco-García R; Villalobos MA; Ramírez-Romero MA; Mújica-Jiménez C; Iturriaga G; Muñoz-Clares RA Arch Microbiol; 2006 Mar; 185(1):14-22. PubMed ID: 16315011 [TBL] [Abstract][Full Text] [Related]
4. [Regulation of isocitratelyases of Pseudomonas aeruginosa by carnitine metabolites]. Kleber HP; Müller E Acta Biol Med Ger; 1970; 25(5):749-56. PubMed ID: 5002293 [No Abstract] [Full Text] [Related]
5. [Formation of 3-dehydrocarnitine from L-carnitine through the action of a Pseudomonas aeruginosa enzyme]. Kleber HP; Schöpp W; Sorger H; Tauchert H; Aurich H Acta Biol Med Ger; 1967; 19(5):659-67. PubMed ID: 4968678 [No Abstract] [Full Text] [Related]
6. [Kinetics of active carnitine transport in Pseudomonas aeruginosa]. Aurich H; Kleber HP Acta Biol Med Ger; 1970; 24(5):559-68. PubMed ID: 4996628 [No Abstract] [Full Text] [Related]
7. Succinate-mediated catabolite repression control on the production of glycine betaine catabolic enzymes in Pseudomonas aeruginosa PAO1 under low and elevated salinities. Diab F; Bernard T; Bazire A; Haras D; Blanco C; Jebbar M Microbiology (Reading); 2006 May; 152(Pt 5):1395-1406. PubMed ID: 16622056 [TBL] [Abstract][Full Text] [Related]
8. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection. Wargo MJ PLoS One; 2013; 8(2):e56850. PubMed ID: 23457628 [TBL] [Abstract][Full Text] [Related]
9. Glycine betaine transmethylase mutant of Pseudomonas aeruginosa. Serra AL; Mariscotti JF; Barra JL; Lucchesi GI; Domenech CE; Lisa AT J Bacteriol; 2002 Aug; 184(15):4301-3. PubMed ID: 12107149 [TBL] [Abstract][Full Text] [Related]
10. [Inhibition potential of carnitine dehydrogenase from Pseudomonas by substrate analogues]. Schöpp W; Kleber HP; Aurich H Acta Biol Med Ger; 1971; 27(1):69-75. PubMed ID: 4259991 [No Abstract] [Full Text] [Related]
11. Effect of boseimycin on some enzyme systems of Bacillus subtilis. Mishra TK Folia Microbiol (Praha); 1975; 20(2):124-9. PubMed ID: 240761 [TBL] [Abstract][Full Text] [Related]
12. Mutants of Pseudomonas aeruginosa unable to inactivate allantoinase and NADP-dependent glutamate dehydrogenase. Smits RA; van de Wijngaard WM; Stassen AP; van der Drift C Arch Microbiol; 1984 Nov; 140(1):40-3. PubMed ID: 6152387 [TBL] [Abstract][Full Text] [Related]
13. Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa. Hylemon PB; Phibbs PV Biochem Biophys Res Commun; 1972 Sep; 48(5):1041-8. PubMed ID: 4626609 [No Abstract] [Full Text] [Related]
14. Carnitine resembles choline in the induction of cholinesterase, acid phosphatase, and phospholipase C and in its action as an osmoprotectant in Pseudomonas aeruginosa. Lucchesi GI; Lisa TA; Casale CH; Domenech CE Curr Microbiol; 1995 Jan; 30(1):55-60. PubMed ID: 7765884 [TBL] [Abstract][Full Text] [Related]
15. Isoenzymes of isocitrate dehydrogenase, malate dehydrogenase & succinic dehydrogenase of clinical isolates of Pseudomonas aeruginosa. Saoji AM; Kelkar SS Indian J Med Res; 1983 Nov; 78():616-23. PubMed ID: 6423531 [No Abstract] [Full Text] [Related]
16. Catabolite repression and the induction of amidase synthesis by Pseudomonas aeruginosa 8602 in continuous culture. Clarke PH; Houldsworth MA; Lilly MD J Gen Microbiol; 1968 Apr; 51(2):225-34. PubMed ID: 4968009 [No Abstract] [Full Text] [Related]
17. Choline dehydrogenase kinetics contribute to glycine betaine regulation differences in chesapeake bay and atlantic oysters. Perrino LA; Pierce SK J Exp Zool; 2000 Feb; 286(3):250-61. PubMed ID: 10653964 [TBL] [Abstract][Full Text] [Related]
18. Choline derivatives increase two different acid phosphatases in Rhizobium meliloti and Pseudomonas aeruginosa. Lucchini AE; Lisa TA; Domenech CE Arch Microbiol; 1990; 153(6):596-9. PubMed ID: 1695086 [TBL] [Abstract][Full Text] [Related]
19. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Wargo MJ Appl Environ Microbiol; 2013 Apr; 79(7):2112-20. PubMed ID: 23354714 [TBL] [Abstract][Full Text] [Related]
20. The Sinorhizobium meliloti glycine betaine biosynthetic genes (betlCBA) are induced by choline and highly expressed in bacteroids. Mandon K; Osterås M; Boncompagni E; Trinchant JC; Spennato G; Poggi MC; Le Rudulier D Mol Plant Microbe Interact; 2003 Aug; 16(8):709-19. PubMed ID: 12906115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]