These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4968068)

  • 21. Regulation of purine nucleotide synthesis in Bacillus subtilis. I. Enzyme repression by purine derivatives.
    Momose H; Nishikawa H; Shiio I
    J Biochem; 1966 Apr; 59(4):325-31. PubMed ID: 4959359
    [No Abstract]   [Full Text] [Related]  

  • 22. [Relations between catabolite repression and sporulation in Bacillus subtilis (author's transl)].
    López JM; Thoms B
    Arch Microbiol; 1976 Aug; 109(1-2):181-6. PubMed ID: 822795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene expression during outgrowth of Bacillus subtilis spores. The relationship between gene order on the chromosome and temporal sequence of enzyme synthesis.
    Kennett RH; Sueoka N
    J Mol Biol; 1971 Aug; 60(1):31-44. PubMed ID: 4999102
    [No Abstract]   [Full Text] [Related]  

  • 24. Sporulation of Bacillus subtilis in continuous culture.
    Dawes IW; Mandelstam J
    J Bacteriol; 1970 Sep; 103(3):529-35. PubMed ID: 4990846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. THE STEREOCHEMISTRY OF DECARBOXYLATION OF ISOCITRATE BY ISOCITRIC ACID DEHYDROGENASE.
    LIENHARD GE; ROSE IA
    Biochemistry; 1964 Feb; 3():185-90. PubMed ID: 14163939
    [No Abstract]   [Full Text] [Related]  

  • 26. Isolation of Bacillus subtilis mutants pleiotropically insensitive to glucose catabolite repression.
    Fisher SH; Magasanik B
    J Bacteriol; 1984 Mar; 157(3):942-4. PubMed ID: 6421803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of Bacillus stearothermophilus mutants blocked in catabolic function.
    Rowe JJ; Goldberg ID; Amelunxen RE
    J Bacteriol; 1976 Apr; 126(1):520-3. PubMed ID: 1262307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Citrate metabolism of alveolar bone in alloxan-diabetic rats.
    Tsukamoto Y; Nakamura R; Negishi T; Honjo K; Tsunemitsu A; Matsumura T
    J Periodontol; 1967; 38(3):238-41. PubMed ID: 5229290
    [No Abstract]   [Full Text] [Related]  

  • 29. Metabolic interlock. The multi-metabolite control of prephenate dehydratase activity in Bacillus subtilis.
    Rebello JL; Jensen RA
    J Biol Chem; 1970 Aug; 245(15):3738-44. PubMed ID: 4992710
    [No Abstract]   [Full Text] [Related]  

  • 30. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli.
    Gray CT; Wimpenny JW; Mossman MR
    Biochim Biophys Acta; 1966 Mar; 117(1):33-41. PubMed ID: 5330664
    [No Abstract]   [Full Text] [Related]  

  • 31. Distribution of the sites of alkaline phosphatase(s) activity in vegetative cells of Bacillus subtilis.
    Ghosh BK; Wouters JT; Lampen JO
    J Bacteriol; 1971 Nov; 108(2):928-37. PubMed ID: 4108474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The conversion of citrate into cis-aconitate and isocitrate in the presence of aconitase.
    KREBS HA; HOLZACH O
    Biochem J; 1952 Nov; 52(3):527-8. PubMed ID: 13018271
    [No Abstract]   [Full Text] [Related]  

  • 33. Threonine synthetase of Bacillus subtilis. The nature of an associated dehydratase activity.
    Skarstedt MT; Greer SB
    J Biol Chem; 1973 Feb; 248(3):1032-44. PubMed ID: 4630852
    [No Abstract]   [Full Text] [Related]  

  • 34. Fluorocitrate inhibition of aconitate hydratase and the tricarboxylate carrier of rat liver mitochondria.
    Brand MD; Evans SM; Mendes-Mourão J; Chappell JB
    Biochem J; 1973 May; 134(1):217-24. PubMed ID: 4723224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The redox environment and microbial physiology. I. The transition from anaerobiosis to aerobiosis in continuous cultures of facultative anaerobes.
    Wimpenny JW; Necklen DK
    Biochim Biophys Acta; 1971 Dec; 253(2):352-9. PubMed ID: 4332305
    [No Abstract]   [Full Text] [Related]  

  • 36. Effects of two end products on enzyme repression in purine nucleotide biosynthesis.
    Sato H; Shiio I
    J Biochem; 1970 Dec; 68(6):763-73. PubMed ID: 4993288
    [No Abstract]   [Full Text] [Related]  

  • 37. Multiple regulatory sites in the Bacillus subtilis citB promoter region.
    Fouet A; Jin SF; Raffel G; Sonenshein AL
    J Bacteriol; 1990 Sep; 172(9):5408-15. PubMed ID: 2118511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa.
    Potts JR; Clarke PH
    J Gen Microbiol; 1976 Apr; 93(2):377-87. PubMed ID: 6623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyruvate kinase of bacillus subtilis.
    Diesterhaft M; Freese E
    Biochim Biophys Acta; 1972 May; 268(2):373-80. PubMed ID: 4623707
    [No Abstract]   [Full Text] [Related]  

  • 40. Adenine nucleotide changes associated with the initiation of sporulation in Bacillus subtilis.
    Hutchison KW; Hanson RS
    J Bacteriol; 1974 Jul; 119(1):70-5. PubMed ID: 4209776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.