These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 4968079)

  • 1. Effect of adenine on the photodynamic inactivation of transforming deoxyribonucleic acid in the presence of riboflavin.
    Uehara K; Mizoguchi T; Hosomi S
    J Biochem; 1967 Oct; 62(4):507-8. PubMed ID: 4968079
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of adenine on the riboflavin-sensitized photoreaction. II. Effect of adenine on the photodynamic inactivation of transforming deoxyribonucleic acid in the presence of riboflavin.
    Uehara K; Mizoguchi T; Hosomi S
    J Biochem; 1972 May; 71(5):805-10. PubMed ID: 4627422
    [No Abstract]   [Full Text] [Related]  

  • 3. PHOTOSENSITIZED INACTIVATION OF DEOXYRIBONUCLEIC ACID.
    SUSSENBACH JS; BERENDS W
    Biochim Biophys Acta; 1963 Sep; 76():154-6. PubMed ID: 14068550
    [No Abstract]   [Full Text] [Related]  

  • 4. Photodynamic mutagenic activity of riboflavin for transforming deoxyribonucleic acid and accelerative effect of adenine.
    Uehara K; Mizoguchi T; Hosomi S
    J Vitaminol (Kyoto); 1971 Dec; 17(4):199-202. PubMed ID: 5003871
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of adenine on the riboflavin-sensitized photoreaction. 3. Effect of adenine on the photodegradation of guanine residues in deoxyribonucleic acid in the presence of riboflavin.
    Uehara K; Mizoguchi T; Hosomi S
    J Biochem; 1972 May; 71(5):811-5. PubMed ID: 4627423
    [No Abstract]   [Full Text] [Related]  

  • 6. Dye-mediated photodynamic inactivation of Bacillus subtilis.
    O'Rourke JF; Dowds BC
    Biochem Soc Trans; 1992 Feb; 20(1):76S. PubMed ID: 1633998
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of adenine on the photodynamic inactivation of yeast alcohol dehydrogenase in the presence of riboflavin.
    Uehara K; Yonezawa M; Hosomi S; Hayashi R
    J Biochem; 1966 Dec; 60(6):721-2. PubMed ID: 5982536
    [No Abstract]   [Full Text] [Related]  

  • 8. The fractionation of transforming deoxyribonucleic acid from Bacillus subtilis.
    Barker GR; Hodges P
    Biochem J; 1969 Mar; 112(1):14P-15P. PubMed ID: 4975415
    [No Abstract]   [Full Text] [Related]  

  • 9. [Studies on the photodynamic inactivation of Escherichia coli tRNA in the presence of riboflavin. II. Effects of adenine on the photodynamic inactivation of tRNA].
    Uehara K; Hayakawa T; Nabeshima T; Yamamura M
    Yakugaku Zasshi; 1973 Jun; 93(6):794-803. PubMed ID: 4581435
    [No Abstract]   [Full Text] [Related]  

  • 10. Chromatography of transforming deoxyribonucleic acid on methylated albumin and by gel filtration.
    Barker GR; Hodges P
    Biochem J; 1974 Mar; 137(3):543-6. PubMed ID: 4214092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 5,6-dimethylbenzimidazole, adenine and riboflavin on ruminal vitamin B12 synthesis.
    Rickard TR; Bigger GW; Elliot JM
    J Anim Sci; 1975 Jun; 40(6):1199-204. PubMed ID: 1141068
    [No Abstract]   [Full Text] [Related]  

  • 12. Aberrant DNA methylation under conditions of thymine deprivation in Bacillus subtilis.
    Buick RN; Harris WJ
    J Gen Microbiol; 1975 Oct; 90(2):347-54. PubMed ID: 811759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodynamic inactivation of some Bacillus subtilis bacteriophages.
    Kaláb D
    Experientia; 1967 Mar; 23(3):181-2. PubMed ID: 4964306
    [No Abstract]   [Full Text] [Related]  

  • 15. Some properties of deoxyribonucleic acid in competent Bacillus subtilis.
    Harris WJ; Barr GC
    Biochem J; 1968 Dec; 110(3):38P. PubMed ID: 4973550
    [No Abstract]   [Full Text] [Related]  

  • 16. Investigation of the operon of riboflavin biosynthesis in Bacillus subtilis. 3. Production and properties of mutants with a complex regulator genotype.
    Bresler SE; Cherepenko EI; Perumov DA
    Sov Genet; 1974 Feb; 7(11):1466-70. PubMed ID: 4208212
    [No Abstract]   [Full Text] [Related]  

  • 17. In vitro studies of effects of light and riboflavin on DNA and HeLa cells.
    Speck WT; Chen CC; Rosenkranz HS
    Pediatr Res; 1975 Mar; 9(3):150-3. PubMed ID: 1121420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of native and denatured transforming deoxyribonucleic acid from Bacillus subtilis.
    Ayad SR; Barker GR; Weigold J
    Biochem J; 1968 Apr; 107(3):387-93. PubMed ID: 4297046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of deoxyribonucleic acid and ribosomal ribonucleic acid from bacteria.
    Kirby KS; Fox-Carter E; Guest M
    Biochem J; 1967 Jul; 104(1):258-62. PubMed ID: 4962318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of polycations on the transforming activity of various markers of Bacillus subtilis.
    el-Hamalawi AR; Shihabi HR
    Ital J Biochem; 1984; 33(6):369-80. PubMed ID: 6441790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.