These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 496898)

  • 1. Analyis of met-form haemoglobins in human erythrocytes of normal adults and of a patient with hereditary methaemoglobinaemia due to deficiency of NADH-cytochrome b5 reductase.
    Tomoda A; Imoto M; Hirano M; Yoneyama Y
    Biochem J; 1979 Aug; 181(2):505-7. PubMed ID: 496898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of NADH-diaphorase and cytochrome b5 reductase activities of erythrocytes, platelets, and leucocytes in hereditary methaemoglobinaemia with and without mental retardation.
    Takeshita M; Matsuki T; Tanishima K; Yubisui T; Yoneyama Y; Kurata K; Hara N; Igarashi T
    J Med Genet; 1982 Jun; 19(3):204-9. PubMed ID: 6896729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of methaemoglobin in normal adults and in patients with hereditary methaemoglobinaemia.
    Perutz MF
    Biochem J; 1981 May; 195(2):519-20. PubMed ID: 7316968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine-proline replacement at residue 127 of NADH-cytochrome b5 reductase causes hereditary methemoglobinemia, generalized type.
    Kobayashi Y; Fukumaki Y; Yubisui T; Inoue J; Sakaki Y
    Blood; 1990 Apr; 75(7):1408-13. PubMed ID: 2107882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceleration of methaemoglobin reduction by riboflavin in human erythrocytes.
    Matsuki T; Yubisui T; Tomoda A; Yoneyama Y; Takeshita M; Hirano M; Kobayashi K; Tani Y
    Br J Haematol; 1978 Aug; 39(4):523-8. PubMed ID: 698125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Congenital methemoglobinemia with a deficiency of cytochrome b5.
    Hegesh E; Hegesh J; Kaftory A
    N Engl J Med; 1986 Mar; 314(12):757-61. PubMed ID: 3951505
    [No Abstract]   [Full Text] [Related]  

  • 7. Kinetic studies on methemoglobin reduction by human red cell NADH cytochrome b5 reductase.
    Tomoda A; Yubisui T; Tsuji A; Yoneyama Y
    J Biol Chem; 1979 Apr; 254(8):3119-23. PubMed ID: 429336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hereditary methemoglobinemia due to cytochrome b5 reductase deficiency in blood cells without associated neurologic and mental disorders.
    Tanishima K; Tanimoto K; Tomoda A; Mawatari K; Matsukawa S; Yoneyama Y; Ohkuwa H; Takazakura E
    Blood; 1985 Dec; 66(6):1288-91. PubMed ID: 4063522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymopenic hereditary methemoglobinemia: a clinical/biochemical classification.
    Jaffé ER
    Blood Cells; 1986; 12(1):81-90. PubMed ID: 3539237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-dependent decay of cytochrome b5 and cytochrome b5 reductase in human erythrocytes.
    Matsuki T; Tamura M; Takeshita M; Yoneyama Y
    Biochem J; 1981 Jan; 194(1):327-30. PubMed ID: 7305986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of methaemoglobin reduction by human erythrocytes.
    Tomoda A; Ida M; Tsuji A; Yoneyama Y
    Biochem J; 1980 May; 188(2):535-40. PubMed ID: 7396878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methaemoglobinaemia resulting from heterozygosity for two NADH-methaemoglobin reductase variants: characterization as NADH-ferricyanide reductase.
    Board PG; Pidcock ME
    Br J Haematol; 1981 Mar; 47(3):361-70. PubMed ID: 6893938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalised deficiency of cytochrome b5 reductase in congenital methaemoglobinaemia with mental retardation.
    Leroux A; Junien C; Kaplan J; Bamberger J
    Nature; 1975 Dec; 258(5536):619-20. PubMed ID: 1207738
    [No Abstract]   [Full Text] [Related]  

  • 14. [Hereditary methemoglobinemia due to NADH cytochrome b5 abnormality--clinical importance of the enzyme in leukocytes and platelets].
    Tomita Y; Inagaki M; Taki M; Miura T; Saito N; Meguro T; Yamada K; Fujii H; Takizawa T; Miwa S
    Rinsho Ketsueki; 1986 Mar; 27(3):412-9. PubMed ID: 3735692
    [No Abstract]   [Full Text] [Related]  

  • 15. Enzymopenic hereditary methemoglobinemia.
    Jaffé ER
    Haematologia (Budap); 1982 Dec; 15(4):389-99. PubMed ID: 6764628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Congenital methaemoglobinaemia due to NADH methaemoglobin reductase deficiency: successful treatment with oral riboflavin.
    Hirano M; Matsuki T; Tanishima K; Takeshita M; Shimizu S; Nagamura Y; Yoneyama Y
    Br J Haematol; 1981 Mar; 47(3):353-9. PubMed ID: 6893937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration of NADH-cytochrome b5 reductase in erythrocytes of normal and methemoglobinemic individuals measured with a quantitative radioimmunoblotting assay.
    Borgese N; Pietrini G; Gaetani S
    J Clin Invest; 1987 Nov; 80(5):1296-302. PubMed ID: 3680497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methemoglobin pathophysiology.
    Jaffé ER
    Prog Clin Biol Res; 1981; 51():133-51. PubMed ID: 7022466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Congenital methemoglobin-reductase (cytochrome b5 reductase) deficiency associated with mental retardation in a Spanish girl.
    Vives-Corrons JL; Pujades A; Vela E; Corretger JM; Leroux A; Kaplan JC
    Acta Haematol; 1978; 59(6):348-53. PubMed ID: 97893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes.
    Sannes LJ; Hultquist DE
    Biochim Biophys Acta; 1978 Dec; 544(3):547-54. PubMed ID: 31928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.