These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 496970)
41. Agrobacterium tumefaciens Conn. II. Production of an antibiotic substance. STONIER T J Bacteriol; 1960 Jun; 79(6):889-98. PubMed ID: 13834943 [No Abstract] [Full Text] [Related]
42. Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Veselov D; Langhans M; Hartung W; Aloni R; Feussner I; Götz C; Veselova S; Schlomski S; Dickler C; Bächmann K; Ullrich CI Planta; 2003 Jan; 216(3):512-22. PubMed ID: 12520344 [TBL] [Abstract][Full Text] [Related]
43. Opine utilization by Agrobacterium spp.: octopine-type Ti plasmids encode two pathways for mannopinic acid degradation. Dessaux Y; Guyon P; Petit A; Tempé J; Demarez M; Legrain C; Tate ME; Farrand SK J Bacteriol; 1988 Jul; 170(7):2939-46. PubMed ID: 2838452 [TBL] [Abstract][Full Text] [Related]
44. Arginine catabolism in Agrobacterium strains: role of the Ti plasmid. Dessaux Y; Petit A; Tempé J; Demarez M; Legrain C; Wiame JM J Bacteriol; 1986 Apr; 166(1):44-50. PubMed ID: 3957872 [TBL] [Abstract][Full Text] [Related]
45. Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Velázquez E; Palomo JL; Rivas R; Guerra H; Peix A; Trujillo ME; García-Benavides P; Mateos PF; Wabiko H; Martínez-Molina E Syst Appl Microbiol; 2010 Aug; 33(5):247-51. PubMed ID: 20627641 [TBL] [Abstract][Full Text] [Related]
46. The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Carlier A; Chevrot R; Dessaux Y; Faure D Mol Plant Microbe Interact; 2004 Sep; 17(9):951-7. PubMed ID: 15384485 [TBL] [Abstract][Full Text] [Related]
47. [Effect of maleic hydrazide on the Agrobacterium tumefaciens. I. Study of the action of maleic hydrazide on the growth and synthesis of beta-indolacetic acid]. Beltrá R Microbiol Esp; 1968; 21(3):109-19. PubMed ID: 5731452 [No Abstract] [Full Text] [Related]
48. Sustained ethylene production in Agrobacterium-transformed carrot disks caused by expression of the T-DNA tms gene products. Goodman TC; Montoya AL; Williams S; Chilton MD J Bacteriol; 1986 Jul; 167(1):387-8. PubMed ID: 3722126 [TBL] [Abstract][Full Text] [Related]
49. Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Theunis M; Kobayashi H; Broughton WJ; Prinsen E Mol Plant Microbe Interact; 2004 Oct; 17(10):1153-61. PubMed ID: 15497408 [TBL] [Abstract][Full Text] [Related]
50. [Influence of maleic hydrazines on the Agrobacterium tumefaciens. II. Formation of tumors due to the action of maleic hydrazine on the bacteria and precursors of beta-indolacetic acid]. Beltrá R Microbiol Esp; 1968; 21(3):121-7. PubMed ID: 5731453 [No Abstract] [Full Text] [Related]
52. [On the metabolism of tryptamine by Rhizobium]. Rigaud J C R Acad Hebd Seances Acad Sci D; 1968 Dec; 267(25):2216-9. PubMed ID: 4973839 [No Abstract] [Full Text] [Related]
53. On the extracellular accumulation and isolation of D-ribuloxe in cultures of Agrobacterium tumefaciens. Suzuki T; Hochster RM Biochem Biophys Res Commun; 1965 May; 19(5):637-42. PubMed ID: 5834715 [No Abstract] [Full Text] [Related]
54. Requirements for and rates of formation of extracellular pseudouridine by Agrobacterium tumefaciens. Suzuki T; Hochster RM Can J Microbiol; 1966 Apr; 12(2):271-4. PubMed ID: 5929154 [No Abstract] [Full Text] [Related]
55. Effect of indoleacetic acid on the growth of Rhizobium in culture. Dullaart J; Wijffelman CA; Haveman J Antonie Van Leeuwenhoek; 1971; 37(2):219-24. PubMed ID: 5314554 [No Abstract] [Full Text] [Related]
56. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. McIntyre KE; Bush DR; Argueso CT Front Plant Sci; 2021; 12():677585. PubMed ID: 34504504 [TBL] [Abstract][Full Text] [Related]
57. Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation. Cicatelli A; Guarino F; Baldan E; Castiglione S Environ Sci Pollut Res Int; 2017 Mar; 24(9):8866-8878. PubMed ID: 27822692 [TBL] [Abstract][Full Text] [Related]
58. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. Boivin S; Fonouni-Farde C; Frugier F Front Plant Sci; 2016; 7():1240. PubMed ID: 27588025 [TBL] [Abstract][Full Text] [Related]
59. Plant responses to Agrobacterium tumefaciens and crown gall development. Gohlke J; Deeken R Front Plant Sci; 2014; 5():155. PubMed ID: 24795740 [TBL] [Abstract][Full Text] [Related]
60. Phytohormones in the formation of crown gall tumors. Weiler EW; Spanier K Planta; 1981 Dec; 153(4):326-37. PubMed ID: 24276937 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]