These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 497002)
1. Some adjuncts to oxime-atropine therapy for organophosphate intoxication--their effects on acetylcholinesterase. Dawson RM; Bladen MP Biochem Pharmacol; 1979 Jul; 28(14):2211-4. PubMed ID: 497002 [No Abstract] [Full Text] [Related]
2. Continual monitoring of the reactivation effect of oximes on blood acetylcholinesterase in the rats poisoned with organophosphates. Bajgar J; Fusek J; Patocka J; Hrdina V Toxicology; 1981; 21(1):71-5. PubMed ID: 7281197 [TBL] [Abstract][Full Text] [Related]
3. Cold exposure decreases the effectiveness of atropine-oxime treatment in organophosphate intoxication in rats and mice. Kaliste-Korhonen E; Ryhänen R; Ylitalo P; Hänninen O Gen Pharmacol; 1989; 20(6):805-9. PubMed ID: 2687080 [TBL] [Abstract][Full Text] [Related]
4. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors. Soukup O; Jun D; Tobin G; Kuca K Arch Toxicol; 2013 Apr; 87(4):711-9. PubMed ID: 23179755 [TBL] [Abstract][Full Text] [Related]
5. Oximes: Reactivators of phosphorylated acetylcholinesterase and antidotes in therapy against tabun poisoning. Kovarik Z; Calić M; Sinko G; Bosak A; Berend S; Vrdoljak AL; Radić B Chem Biol Interact; 2008 Sep; 175(1-3):173-9. PubMed ID: 18501341 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of antidotes and their combinations in the treatment of acute carbamate poisoning in rats. Stojiljković MP; Škrbić R; Jokanović M; Kilibarda V; Bokonjić D; Vulović M Toxicology; 2018 Sep; 408():113-124. PubMed ID: 30176331 [TBL] [Abstract][Full Text] [Related]
7. Hydrolysis of acetylthiocholine iodide and reactivation of phoxim-inhibited acetylcholinesterase by pralidoxime chloride, obidoxime chloride and trimedoxime. Zhang YH; Miyata T; Wu ZJ; Wu G; Xie LH Arch Toxicol; 2007 Nov; 81(11):785-92. PubMed ID: 17534602 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX. Chambers JE; Chambers HW; Funck KE; Meek EC; Pringle RB; Ross MK Chem Biol Interact; 2016 Nov; 259(Pt B):154-159. PubMed ID: 27387540 [TBL] [Abstract][Full Text] [Related]
9. Oximes in organophosphate poisoning: 60 years of hope and despair. Worek F; Thiermann H; Wille T Chem Biol Interact; 2016 Nov; 259(Pt B):93-98. PubMed ID: 27125761 [TBL] [Abstract][Full Text] [Related]
10. Reactivation and aging of cyclopentyl methylphosphonylated acetylcholinesterase in the presence of some 1-alkyl-2-hydroxyiminomethyl-pyridinium salts. de Jong LP; Wolring GZ Biochem Pharmacol; 1978; 27(24):2911-7. PubMed ID: 736984 [No Abstract] [Full Text] [Related]
11. Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: in vitro reactivation of red blood cell acetylcholinesterase inhibited by paraoxon. Petroianu GA; Arafat K; Kuca K; Kassa J J Appl Toxicol; 2006; 26(1):64-71. PubMed ID: 16193529 [TBL] [Abstract][Full Text] [Related]
12. Temporal effects of newly developed oximes (K027, K048) on malathion-induced acetylcholinesterase inhibition and lipid peroxidation in mouse prefrontal cortex. da Silva AP; Farina M; Franco JL; Dafre AL; Kassa J; Kuca K Neurotoxicology; 2008 Jan; 29(1):184-9. PubMed ID: 18035420 [TBL] [Abstract][Full Text] [Related]
13. Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: a theoretical approach. Worek F; Aurbek N; Wille T; Eyer P; Thiermann H J Enzyme Inhib Med Chem; 2011 Jun; 26(3):303-8. PubMed ID: 20807085 [TBL] [Abstract][Full Text] [Related]
14. In vivo oxime administration does not influence Ellman acetylcholinesterase assay results. Guarisco JA; O'Donnell JC; Skovira JW; McDonough JH; Shih TM Toxicol Mech Methods; 2009 Sep; 19(6-7):379-85. PubMed ID: 19778238 [TBL] [Abstract][Full Text] [Related]
15. Acceleration of oxime-induced reactivation of organophosphate-inhibited fetal bovine serum acetylcholinesterase by monoquaternary and bisquaternary ligands. Luo C; Ashani Y; Doctor BP Mol Pharmacol; 1998 Apr; 53(4):718-26. PubMed ID: 9547363 [TBL] [Abstract][Full Text] [Related]
16. Some benefit from non-oximes MB408, MB442 and MB444 in combination with the oximes HI-6 or obidoxime and atropine in antidoting sarin or cyclosarin poisoned mice. Kassa J; Timperley CM; Bird M; Williams RL; Green AC; Tattersall JEH Toxicology; 2018 Sep; 408():95-100. PubMed ID: 30005893 [TBL] [Abstract][Full Text] [Related]
17. Oxime-mediated in vitro reactivation kinetic analysis of organophosphates-inhibited human and electric eel acetylcholinesterase. Sahu AK; Sharma R; Gupta B; Musilek K; Kuca K; Acharya J; Ghosh KK Toxicol Mech Methods; 2016 Jun; 26(5):319-26. PubMed ID: 27101948 [TBL] [Abstract][Full Text] [Related]
18. Antidotes or organophosphate poisoning. 2. Thiadiazole-5-carboxaldoximes. Benschop HP; Van den Berg GR; Van Hooidonk C; De Jong LP; Kientz CE; Berends F; Kepner LA; Meeter E; Visser RP J Med Chem; 1979 Nov; 22(11):1306-13. PubMed ID: 533877 [No Abstract] [Full Text] [Related]
19. Influence of trimedoxime and atropine on acetylcholinesterase activity in some parts of the brain of mice poisoned by isopropylmethyl phosphonofluoridate. Bajgar F; Jakl A; Hrdina V Biochem Pharmacol; 1971 Nov; 20(11):3230-3. PubMed ID: 5132126 [No Abstract] [Full Text] [Related]
20. Limitations in current acetylcholinesterase structure-based design of oxime antidotes for organophosphate poisoning. Kovalevsky A; Blumenthal DK; Cheng X; Taylor P; Radić Z Ann N Y Acad Sci; 2016 Aug; 1378(1):41-49. PubMed ID: 27371941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]