These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4970990)

  • 1. Inactivation of kanamycin, neomycin, and streptomycin by enzymes obtained in cells of Pseudomonas aeruginoa.
    Doi O; Ogura M; Tanaka N; Umezawa H
    Appl Microbiol; 1968 Sep; 16(9):1276-81. PubMed ID: 4970990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and properties of dihydrostreptomycin-phosphorylating enzyme from Pseudomonas aeruginosa.
    Kobayashi F; Yamaguchi M; Sato J; Mitsuhashi S
    Jpn J Microbiol; 1972 Jan; 16(1):15-9. PubMed ID: 4114204
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphorylation and inactivation of aminoglycosidic antibiotics by E. coli carrying R factor.
    Okanishi K; Kondo S; Utahara R; Umezawa H
    J Antibiot (Tokyo); 1968 Jan; 21(1):13-21. PubMed ID: 4876913
    [No Abstract]   [Full Text] [Related]  

  • 4. Two enzymes which phosphorylate neomycin and kanamycin in Escherichia coli strains carrying R factors.
    Brzezinska M; Davies J
    Antimicrob Agents Chemother; 1973 Feb; 3(2):266-9. PubMed ID: 4597718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of kanamycin-phosphorylating enzyme from Pseudomonas aeruginosa.
    Doi O; Kondo S; Tanaka N; Umezawa H
    J Antibiot (Tokyo); 1969 Jun; 22(6):273-82. PubMed ID: 4980409
    [No Abstract]   [Full Text] [Related]  

  • 6. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria.
    Benveniste R; Davies J
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2276-80. PubMed ID: 4209515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanisms of enzymatic inactivation of aminoglycoside antibiotics by clinically semi-resistant strains of E. coli].
    Griaznova NS; Demina AS; Sazykin IuI; Navashin SM
    Antibiotiki; 1974 Feb; 19(2):117-21. PubMed ID: 4618749
    [No Abstract]   [Full Text] [Related]  

  • 8. Drug dependence and phenotype masking in streptomycin dependent and paromomycin dependent mutants of Escherichia coli.
    Quesnel LB; York P; Skinner VM
    Microbios; 1971 Sep; 4(14):97-107. PubMed ID: 4949967
    [No Abstract]   [Full Text] [Related]  

  • 9. Inactivation and phosphorylation of kanamycin by drug-resistant Staphylococcus aureus.
    Doi O; Miyamoto M; Tanaka N; Umezawa H
    Appl Microbiol; 1968 Sep; 16(9):1282-4. PubMed ID: 5676403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [New profile of a resistance to aminoglycosides in Pseudomonas aeruginosa].
    Pitton JS; Roupas A
    Pathol Microbiol (Basel); 1974; 40(3):189-90. PubMed ID: 4210492
    [No Abstract]   [Full Text] [Related]  

  • 11. Kanamycin-resistance mechanism of Pseudomonas aeruginosa governed by an R-plasmid independently of inactivating enzymes.
    Kono M; O'Hara K
    J Antibiot (Tokyo); 1977 Aug; 30(8):688-90. PubMed ID: 409703
    [No Abstract]   [Full Text] [Related]  

  • 12. A new enzyme in Escherichia coli carrying R-factor phosphorylating 3'-hydroxyl of butirosin A, kanamycin, neamine and ribostamycin.
    Yagisawa M; Yamamoto H; Naganawa H; Kondo S; Takeuchi T
    J Antibiot (Tokyo); 1972 Dec; 25(12):748-50. PubMed ID: 4568694
    [No Abstract]   [Full Text] [Related]  

  • 13. A new simple assay for determining aminoglycoside inactivation in intact cells of Pseudomonas aeruginosa.
    O'Hara K; Kawabe T; Taniguchi K; Ohnuma M; Nakagawa M; Naitou Y; Sawai T
    Microbios; 1997; 90(364-365):177-86. PubMed ID: 9418036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation and inactivation of kanamycin by Pseudomonas aeruginosa.
    Umezawa H; Doi O; Ogura M; Kondo S; Tanaka N
    J Antibiot (Tokyo); 1968 Feb; 21(2):154-5. PubMed ID: 4970687
    [No Abstract]   [Full Text] [Related]  

  • 15. [Distribution of the modes of streptomycin resistance in the wild Enterobacteriaceae strains].
    Rassekh M; Pitton JS
    Pathol Microbiol (Basel); 1970; 36(5):301-2. PubMed ID: 4935370
    [No Abstract]   [Full Text] [Related]  

  • 16. Aminoglycoside-modifying enzymes.
    Haas MJ; Dowding JE
    Methods Enzymol; 1975; 43():611-28. PubMed ID: 166284
    [No Abstract]   [Full Text] [Related]  

  • 17. The loss of phenotypic suppression in streptomycin-resistant mutants.
    Apirion D; Schlessinger D
    Proc Natl Acad Sci U S A; 1967 Jul; 58(1):206-12. PubMed ID: 5341055
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphorylative inactivation of aminoglycosidic antibiotics by Escherichia coli carrying R factor.
    Umezawa H; Okanishi M; Kondo S; Hamana K; Utahara R; Maeda K; Mitsuhashi S
    Science; 1967 Sep; 157(3796):1559-61. PubMed ID: 4166859
    [No Abstract]   [Full Text] [Related]  

  • 19. Resistance factor-mediated streptomycin resistance.
    Harwood JH; Smith DH
    J Bacteriol; 1969 Mar; 97(3):1262-71. PubMed ID: 4887506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance mechanisms of kanamycin-, neomycin-, and streptomycin-producing streptomycetes to aminoglycoside antibiotics.
    Hotta K; Yamamoto H; Okami Y; Umezawa H
    J Antibiot (Tokyo); 1981 Sep; 34(9):1175-82. PubMed ID: 7328057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.