These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 497170)

  • 1. Creatine kinase. Nuclear magnetic resonance and fluorescence evidence for interaction of adenosine 5'-diphosphate with aromatic residue(s).
    Vasák M; Nagayama K; Wüthrich K; Mertens ML; Kägi JH
    Biochemistry; 1979 Nov; 18(23):5050-5. PubMed ID: 497170
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements.
    James TL
    Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase.
    Rosevear PR; Desmeules P; Kenyon GL; Mildvan AS
    Biochemistry; 1981 Oct; 20(21):6155-64. PubMed ID: 7306503
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 5. Phosphorus nuclear-magnetic-resonance studies of the transition-state analogue complex of creatine kinase.
    Milner-White EJ; Rycroft DS
    Biochem J; 1977 Dec; 167(3):827-9. PubMed ID: 603637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in creatine kinase complexes: effects due to weak nonspecific binding.
    Murali N; Jarori GK; Landy SB; Rao BD
    Biochemistry; 1993 Nov; 32(47):12941-8. PubMed ID: 8251518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of 8-anilino-1-naphthalenesulfonate with creatine kinase. Evidence for cooperativitiy of nucleotide binding.
    McLaughlin AC
    J Biol Chem; 1974 Mar; 249(5):1445-52. PubMed ID: 4817755
    [No Abstract]   [Full Text] [Related]  

  • 8. Involvement of a tyrosine residue in the ADP binding site of creatine kinase. A second-derivative UV-spectroscopy study.
    Leydier C; Clottes E; Couthon F; Marcillat O; Vial C
    Biochem Mol Biol Int; 1997 Apr; 41(4):777-84. PubMed ID: 9111938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of creatine phosphokinase and adenylate kinase. A two-dimensional NMR analysis.
    Kantor HL; Ferretti JA; Balaban RS
    Biochim Biophys Acta; 1984 Sep; 789(2):128-35. PubMed ID: 6089892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the lysyl residue at the active site of creatine kinase. Nuclear Overhauser effect studies.
    James TL; Cohn M
    J Biol Chem; 1974 Apr; 249(8):2599-604. PubMed ID: 4856652
    [No Abstract]   [Full Text] [Related]  

  • 11. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart?
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Prog Clin Biol Res; 1989; 315():581-92. PubMed ID: 2798514
    [No Abstract]   [Full Text] [Related]  

  • 12. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 13. Magnesium-adenosine diphosphate binding sites in wild-type creatine kinase and in mutants: role of aromatic residues probed by Raman and infrared spectroscopies.
    Hagemann H; Marcillat O; Buchet R; Vial C
    Biochemistry; 2000 Aug; 39(31):9251-6. PubMed ID: 10924118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance studies of three forms of creatine kinase. Comparison of the properties of native, CH-S-blocked, and H2NCOCH-blocked enzymes.
    Markham GD; Reed GH
    J Biol Chem; 1977 Feb; 252(4):1197-201. PubMed ID: 838713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan residues of creatine kinase: a fluorescence study.
    Messmer CH; Kägi JH
    Biochemistry; 1985 Dec; 24(25):7172-8. PubMed ID: 4084573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance studies of the interaction of spin-labeled creatine kinase with paramagnetic manganese-substrate complexes.
    Cohn M; Diefenbach H; Taylor JS
    J Biol Chem; 1971 Oct; 246(19):6037-42. PubMed ID: 4330065
    [No Abstract]   [Full Text] [Related]  

  • 17. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation.
    Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R
    Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryoenzymic studies on the transition-state analog complex creatine kinase . ADPMg . nitrate . creatine.
    Travers F; Barman TE
    Eur J Biochem; 1980 Sep; 110(2):405-12. PubMed ID: 7439169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational flexibility and structure of creatine kinase.
    Haugland RP
    J Supramol Struct; 1975; 3(2):192-9. PubMed ID: 1195743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state stabilization by six arginines clustered in the active site of creatine kinase.
    Jourden MJ; Geiss PR; Thomenius MJ; Horst LA; Barty MM; Brym MJ; Mulligan GB; Almeida RM; Kersteen BA; Myers NR; Snider MJ; Borders CL; Edmiston PL
    Biochim Biophys Acta; 2005 Aug; 1751(2):178-83. PubMed ID: 16005271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.