These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 497187)
1. Formation of disulfide bonds between glutathione and membrane SH groups in human erythrocytes. Haest CW; Kamp D; Deuticke B Biochim Biophys Acta; 1979 Nov; 557(2):363-71. PubMed ID: 497187 [No Abstract] [Full Text] [Related]
2. Membrane thiol-disulfide status in glucose-6-phosphate dehydrogenase deficient red cells. Relationship to cellular glutathione. Kosower NS; Zipser Y; Faltin Z Biochim Biophys Acta; 1982 Oct; 691(2):345-52. PubMed ID: 7138865 [TBL] [Abstract][Full Text] [Related]
3. Macrophage recognition of periodate-treated erythrocytes: involvement of disulfide formation of the erythrocyte membrane proteins. Beppu M; Ochiai H; Kikugawa K Biochim Biophys Acta; 1989 Feb; 979(1):35-45. PubMed ID: 2537107 [TBL] [Abstract][Full Text] [Related]
4. Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide. Deuticke B; Poser B; Lütkemeier P; Haest CW Biochim Biophys Acta; 1983 Jun; 731(2):196-210. PubMed ID: 6849917 [TBL] [Abstract][Full Text] [Related]
5. Alteration of rheological properties of human erythrocytes by crosslinking of membrane proteins. Maeda N; Kon K; Imaizumi K; Sekiya M; Shiga T Biochim Biophys Acta; 1983 Oct; 735(1):104-12. PubMed ID: 6626542 [TBL] [Abstract][Full Text] [Related]
6. The effect of diamide and glutathione on the uptake of glucose by human erythrocytes. Leoncini G; Maresca M Ital J Biochem; 1983; 32(2):102-10. PubMed ID: 6629727 [TBL] [Abstract][Full Text] [Related]
7. Intra- and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents. Haest CW; Kamp D; Plasa G; Deuticke B Biochim Biophys Acta; 1977 Sep; 469(2):226-30. PubMed ID: 901784 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of protein phosphorylation and induction of protein cross-linking in erythrocyte membranes by diamide. Hosey MM; Plut DA; Tao M Biochim Biophys Acta; 1978 Jan; 506(2):211-20. PubMed ID: 620030 [TBL] [Abstract][Full Text] [Related]
9. Aggregation of intramembrane particles in erythrocyte membranes treated with diamide. Kurantsin-Mills J; Lessin LS Biochim Biophys Acta; 1981 Feb; 641(1):129-37. PubMed ID: 7213709 [TBL] [Abstract][Full Text] [Related]
10. Decreased survival in vivo of diamide-incubated dog erythrocytes. A model of oxidant-induced hemolysis. Johnson GJ; Allen DW; Flynn TP; Finkel B; White JG J Clin Invest; 1980 Nov; 66(5):955-61. PubMed ID: 7430352 [TBL] [Abstract][Full Text] [Related]
11. Stabilization of erythrocyte shape by a chemical increase in membrane shear stiffness. Haest CW; Fischer TM; Plasa G; Deuticke B Blood Cells; 1980; 6(3):539-53. PubMed ID: 7397401 [TBL] [Abstract][Full Text] [Related]
12. Complete exchange of phosphatidylcholine from intact erythrocytes after protein crosslinking. Franck PF; Roelofsen B; Op den Kamp JA Biochim Biophys Acta; 1982 Apr; 687(1):105-8. PubMed ID: 7074104 [TBL] [Abstract][Full Text] [Related]
13. Diamide effect on the ouabain-insensitive APTase activity of red cell membrane. Scutari G; Branca D; Pastorio C Boll Soc Ital Biol Sper; 1979 Mar; 55(6):517-22. PubMed ID: 162124 [TBL] [Abstract][Full Text] [Related]
14. The effect of mild diamide oxidation on the structure and function of human erythrocyte spectrin. Becker PS; Cohen CM; Lux SE J Biol Chem; 1986 Apr; 261(10):4620-8. PubMed ID: 3957910 [TBL] [Abstract][Full Text] [Related]
15. Protein mixed-disulfides in cardiac cells. S-thiolation of soluble proteins in response to diamide. Grimm LM; Collison MW; Fisher RA; Thomas JA Biochim Biophys Acta; 1985 Jan; 844(1):50-4. PubMed ID: 3967051 [TBL] [Abstract][Full Text] [Related]
16. Chemical modification of cytoskeletal proteins of human blood platelets by diamide. Spangenberg P; Heller R; Bosia A; Arese P; Till U Thromb Res; 1984 Dec; 36(6):609-18. PubMed ID: 6528312 [TBL] [Abstract][Full Text] [Related]
17. Effect of factors of favism on the protein and lipid components of rat erythrocyte membrane. D'Aquino M; Gaetani S; Spadoni MA Biochim Biophys Acta; 1983 Jun; 731(2):161-7. PubMed ID: 6849913 [TBL] [Abstract][Full Text] [Related]
18. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity. Fischer TM; Haest CW; Stöhr M; Kamp D; Deuticke B Biochim Biophys Acta; 1978 Jul; 510(2):270-82. PubMed ID: 667045 [TBL] [Abstract][Full Text] [Related]
19. Thiol-dependent K:Cl transport in sheep red cells: VIII. Activation through metabolically and chemically reversible oxidation by diamide. Lauf PK J Membr Biol; 1988; 101(2):179-88. PubMed ID: 3367366 [TBL] [Abstract][Full Text] [Related]
20. The effect of diamide (azodicarboxylic acid-bis-dimethylamide) on sulfhydryl group content, proteins, and the location of phosphatidylethanolamine in human blood platelets. Ostermann G; Spangenberg P; Meyer M; Herrmann FH; Till U Acta Haematol; 1982; 68(4):278-84. PubMed ID: 6217711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]