These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 497187)
21. [Formation of mixed disulfides of glutathione and protein under the action of diamide]. Gerasimov AM; Uvarov VIu Dokl Akad Nauk SSSR; 1978; 240(2):467-70. PubMed ID: 207499 [No Abstract] [Full Text] [Related]
22. The spectrin phosphorylation reaction in human erythrocytes. Greenquist AC; Wyatt JL; Guatelli JC; Shohet SB Prog Clin Biol Res; 1978; 20():1-24. PubMed ID: 652813 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms of decreased erythrocyte deformability and survival in glucose 6-phosphate dehydrogenase mutants. Flynn TP; Johnson GJ; Allen DW Prog Clin Biol Res; 1981; 56():231-49. PubMed ID: 7330011 [TBL] [Abstract][Full Text] [Related]
24. Study on human erythrocyte thioltransferase: comparative characterization with bovine enzyme and its physiological role under oxidative stress. Terada T; Oshida T; Nishimura M; Maeda H; Hara T; Hosomi S; Mizoguchi T; Nishihara T J Biochem; 1992 May; 111(5):688-92. PubMed ID: 1639768 [TBL] [Abstract][Full Text] [Related]
25. Does diamide treatment of intact human erythrocytes cause a loss of phospholipid asymmetry? Franck PF; Op den Kamp JA; Roelofsen B; van Deenen LL Biochim Biophys Acta; 1986 May; 857(1):127-30. PubMed ID: 3964704 [TBL] [Abstract][Full Text] [Related]
26. Cross-linking of red blood cell membrane proteins induced by oxidative stress in beta thalassemia. Kahane I; Shifter A; Rachmilewitz EA FEBS Lett; 1978 Jan; 85(2):267-70. PubMed ID: 620807 [No Abstract] [Full Text] [Related]
27. A comparison of protein S-thiolation (protein mixed-disulfide formation) in heart cells treated with t-butyl hydroperoxide or diamide. Collison MW; Beidler D; Grimm LM; Thomas JA Biochim Biophys Acta; 1986 Jan; 885(1):58-67. PubMed ID: 3942795 [TBL] [Abstract][Full Text] [Related]
28. Diamide inhibited (Ca++ + Mg++) and (Mg++) dependent ATPase in erythrocyte membranes: activity at different temperatures. Scutari G; Ballestrin G; Covaz L Boll Soc Ital Biol Sper; 1979 Jul; 55(13):1283-7. PubMed ID: 159703 [TBL] [Abstract][Full Text] [Related]
29. Diamide induced shift in protein and glutathione thiol: disulfide status delays DNA rejoining after X-irradiation of human cancer cells. Baker MA; Hagner BA Biochim Biophys Acta; 1990 Jan; 1037(1):39-47. PubMed ID: 2294969 [TBL] [Abstract][Full Text] [Related]
30. Membrane skeletal protein structure and interactions in human erythrocytes after their treatment with diamide and calcium. Kumar J; Gupta CM Indian J Biochem Biophys; 1992 Apr; 29(2):123-7. PubMed ID: 1398703 [TBL] [Abstract][Full Text] [Related]
31. Effect of diamide (azodicarboxylic acid-bis-dimethylamide) on arachidonic acid release from human blood platelet phospholipids. Lösche W; Michel E; Thielmann K; Till U Folia Haematol Int Mag Klin Morphol Blutforsch; 1984; 111(6):769-73. PubMed ID: 6083952 [TBL] [Abstract][Full Text] [Related]
32. The role of cysteine in the regulation of blood glutathione-protein mixed disulfides in rats treated with diamide. Di Simplicio P; Giannerini F; Giustarini D; Lusini L; Rossi R Toxicol Appl Pharmacol; 1998 Jan; 148(1):56-64. PubMed ID: 9465264 [TBL] [Abstract][Full Text] [Related]
33. Role of glutathione in reversing the deleterious effects of a thiol-oxidizing agent in Escherichia coli. Hibberd KA; Berget PB; Warner HR; Fuchs JA J Bacteriol; 1978 Mar; 133(3):1150-5. PubMed ID: 346558 [TBL] [Abstract][Full Text] [Related]
34. Reaction of ozone with sulfhydryls of human erythrocytes. Freeman BA; Mudd JB Arch Biochem Biophys; 1981 Apr; 208(1):212-20. PubMed ID: 7259179 [No Abstract] [Full Text] [Related]
35. Hemolysis of human erythrocytes under hydrostatic pressure is suppressed by cross-linking of membrane proteins. Kitajima H; Yamaguchi T; Kimoto E J Biochem; 1990 Dec; 108(6):1057-62. PubMed ID: 2150965 [TBL] [Abstract][Full Text] [Related]
36. [Effect of diamide on protein oxidation and physico-chemical properties of lipids in erythrocyte membranes]. Kozlova NM; Luk'ianenko LM; Antonovich AN; Kut'ko AG; Zubritskaia GP; Slobozhanina EI Biofizika; 2002; 47(3):500-5. PubMed ID: 12068607 [TBL] [Abstract][Full Text] [Related]
37. Topology of membrane sulfhydryl groups in the human erythrocyte. Demonstration of a non-reactive population in intrinsic proteins. Haest CW; Kamp D; Deuticke B Biochim Biophys Acta; 1981 May; 643(2):319-26. PubMed ID: 7225384 [TBL] [Abstract][Full Text] [Related]
38. Role of protein -SH groups in redox homeostasis--the erythrocyte as a model system. Di Simplicio P; Cacace MG; Lusini L; Giannerini F; Giustarini D; Rossi R Arch Biochem Biophys; 1998 Jul; 355(2):145-52. PubMed ID: 9675020 [TBL] [Abstract][Full Text] [Related]
39. Effect of diamide on polyphosphoinositide metabolism in red blood cells. Schwarzer E; Reimann B; Standera S; Jacobasch G Biomed Biochim Acta; 1990; 49(2-3):S255-8. PubMed ID: 2167082 [TBL] [Abstract][Full Text] [Related]
40. Involvement of ATP-dependent aminophospholipid translocation in maintaining phospholipid asymmetry in diamide-treated human erythrocytes. Middlekoop E; Van der Hoek EE; Bevers EM; Comfurius P; Slotboom AJ; Op den Kamp JA; Lubin BH; Zwaal RF; Roelofsen B Biochim Biophys Acta; 1989 May; 981(1):151-60. PubMed ID: 2719970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]