These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 497210)

  • 21. Inhibition of protein synthesis by D-threo-chloramphenicol in the laboratory and nodule forms of Rhizobium lupini.
    Coventry DR; Dilworth MJ
    J Gen Microbiol; 1975 Sep; 90(1):69-75. PubMed ID: 1176963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved method for preparing anaerobic bacteroid suspensions of Rhizobium leguminosarum for the acetylene reduction assay.
    Van Straten J; Roelofsen W
    Appl Environ Microbiol; 1976 Jun; 31(6):859-63. PubMed ID: 820257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacteroid-encoded proteins are secreted into the peribacteroid space by Rhizobium leguminosarum.
    Katinakis P; Lankhorst RM; Louwerse J; van Kammen A; van den Bos RC
    Plant Mol Biol; 1988 Mar; 11(2):183-90. PubMed ID: 24272260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti.
    Fougère F; Le Rudulier D
    J Gen Microbiol; 1990 Jan; 136(1):157-63. PubMed ID: 2351954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protoporphyrin formation in Rhizobium japonicum.
    Keithly JH; Nadler KD
    J Bacteriol; 1983 May; 154(2):838-45. PubMed ID: 6841317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria.
    D'Haeze W; Leoff C; Freshour G; Noel KD; Carlson RW
    J Biol Chem; 2007 Jun; 282(23):17101-13. PubMed ID: 17420254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes.
    Luciński R; Polcyn W; Ratajczak L
    Acta Biochim Pol; 2002; 49(2):537-46. PubMed ID: 12362996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules.
    Vasse J; de Billy F; Camut S; Truchet G
    J Bacteriol; 1990 Aug; 172(8):4295-306. PubMed ID: 2376562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrate and Nitrite Reduction in Relation to Nitrogenase Activity in Soybean Nodules and Rhizobium japonicum Bacteroids.
    Stephens BD; Neyra CA
    Plant Physiol; 1983 Apr; 71(4):731-5. PubMed ID: 16662897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of DNA from free living and endosymbiotic Rhizobium leguminosarum (strain PRE).
    Reijnders L; Visser L; Aalbers AM; Van Kammen A; Houwers A
    Biochim Biophys Acta; 1975 Dec; 414(2):206-16. PubMed ID: 172157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic processes in yellow lupin (Lupinus luteus L.) root nodules.
    Mazurowa H; Ratajczak L
    Acta Biochim Pol; 1989; 36(3-4):257-62. PubMed ID: 2486002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
    Haag AF; Arnold MF; Myka KK; Kerscher B; Dall'Angelo S; Zanda M; Mergaert P; Ferguson GP
    FEMS Microbiol Rev; 2013 May; 37(3):364-83. PubMed ID: 22998605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of the nitrogen-fixing and protein-synthesizing apparatus of bacteroids in pea root nodules.
    Bisseling T; van den Bos RC; Weststrate MW; Hakkaart MJ; van Kammen A
    Biochim Biophys Acta; 1979 May; 562(3):515-26. PubMed ID: 454614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Glucose metabolism in isolated bacteroids of lupine nodules].
    Romanov VI; Ivanov BF; Fedulova NG; Raikhinshteĭn MV; Chermenskaia IE
    Biokhimiia; 1980 Dec; 45(12):2139-45. PubMed ID: 7248347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membranes in lupin root nodules. II. Preparation and properties of peribacteroid membranes and bacteroid envelope inner membranes from developing lupin nodules.
    Robertson JG; Warburton MP; Lyttleton P; Fordyce AM; Bullivant S
    J Cell Sci; 1978 Apr; 30():151-74. PubMed ID: 649683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Nitrogenase, hydrogenase and nitrate reductase activities, oxygen consumption, and ATP content in nodules formed by strains of Rhizobium leguminosarum 128C53 and 300 in symbiosis with pea plants].
    Bedmar EJ; Olivares J
    Microbiologia; 1986 Oct; 2(2):89-96. PubMed ID: 3078142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation.
    Vedam V; Haynes JG; Kannenberg EL; Carlson RW; Sherrier DJ
    Mol Plant Microbe Interact; 2004 Mar; 17(3):283-91. PubMed ID: 15000395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulation of alpha,alpha-trehalose by Rhizobium bacteria and bacteroids.
    Streeter JG
    J Bacteriol; 1985 Oct; 164(1):78-84. PubMed ID: 4044531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis.
    Mergaert P; Uchiumi T; Alunni B; Evanno G; Cheron A; Catrice O; Mausset AE; Barloy-Hubler F; Galibert F; Kondorosi A; Kondorosi E
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5230-5. PubMed ID: 16547129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunological evidence for the capability of free-living Rhizobium japonicum to synthesize a portion of a nitrogenase component.
    Bishop PE; Evans HJ; Daniel RM; Hampton RO
    Biochim Biophys Acta; 1975 Feb; 381(2):248-56. PubMed ID: 803382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.