BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4973062)

  • 1. Formation of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate during oxidation of mercaptoacetate by bromine.
    Wieland T; Bäuerlein E
    Angew Chem Int Ed Engl; 1968 Nov; 7(11):893-4. PubMed ID: 4973062
    [No Abstract]   [Full Text] [Related]  

  • 2. Formation of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate during oxidation of durohydroquinone monoacetate.
    Wieland T; Aquila H
    Angew Chem Int Ed Engl; 1968 Mar; 7(3):213-4. PubMed ID: 4966641
    [No Abstract]   [Full Text] [Related]  

  • 3. [Structure of electrochemically reduced adenine nucleotides. Their interaction with inorganic phosphate].
    Makarov AD; Opanasenko VK; Lebedeva AI
    Biokhimiia; 1976 Sep; 41(9):1561-6. PubMed ID: 974170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE PREPARATION OF ADENOSINE 5'-PYROPHOSPHATE BY A NON-ENZYMIC METHOD.
    DAWSON RM; FORD M; EICHBERG J
    Biochem J; 1965 Apr; 95(1):104-6. PubMed ID: 14333545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of adenosine triphosphate in the oxidation of a model for the reduced pyridine nucleotides.
    Bechara EJ; Cilento G
    Biochemistry; 1972 Jul; 11(14):2606-10. PubMed ID: 4339876
    [No Abstract]   [Full Text] [Related]  

  • 6. POTENTIOMETRIC STUDIES OF THE SECONDARY PHOSPHATE IONIZATIONS OF AMP, ADP, AND ATP, AND CALCULATIONS OF THERMODYNAMIC DATA FOR THE HYDROLYSIS REACTIONS.
    PHILLIPS RC; GEORGE P; RUTMAN RJ
    Biochemistry; 1963; 2():501-8. PubMed ID: 14069537
    [No Abstract]   [Full Text] [Related]  

  • 7. ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI.
    MAKMAN RS; SUTHERLAND EW
    J Biol Chem; 1965 Mar; 240():1309-14. PubMed ID: 14284741
    [No Abstract]   [Full Text] [Related]  

  • 8. The pre-steady state of the myosin-adenosine triphosphate system. XI. Formation and decomposition of the reactive myosin-phosphate-ADP complex.
    Inoue A; Shibata-Sekiya K; Tonomura Y
    J Biochem; 1972 Jan; 71(1):115-24. PubMed ID: 5062721
    [No Abstract]   [Full Text] [Related]  

  • 9. ESTIMATES OF THERMODYNAMIC DATA FOR THE FORMATION OF THE MG2 COMPLEXES OF ATP AND ADP AT ZERO IONIC STRENGTH.
    GEORGE P; PHILLIPS RC; RUTMAN RJ
    Biochemistry; 1963; 2():508-12. PubMed ID: 14069538
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the energy coupling sites of photophosphorylation. IV. The relation of proton fluxes to the electron transport and ATP formation associated with photosystem II.
    Gould JM; Izawa S
    Biochim Biophys Acta; 1974 Mar; 333(3):509-24. PubMed ID: 4847550
    [No Abstract]   [Full Text] [Related]  

  • 11. COMPOUNDS OF FERRIC IRON WITH ADENOSINE TRIPHOSPHATE AND OTHER NUCLEOSIDE PHOSPHATES. REP 591.
    GOUCHER CR
    Rep US Army Med Res Lab; 1963 Oct; ():1-21. PubMed ID: 14133523
    [No Abstract]   [Full Text] [Related]  

  • 12. Interactions of divalent metal ions with inorganic and nucleoside phosphates. II. Kinetics of magnesium(II) with HP 3 O 10 4- ,ATP, CTP, HP 2 O 7 3- , ADP, and CDP.
    Frey CM; Banyasz JL; Stuehr JE
    J Am Chem Soc; 1972 Dec; 94(26):9198-204. PubMed ID: 4345161
    [No Abstract]   [Full Text] [Related]  

  • 13. Thermodynamic data for the hydrolysis of adenosine triphosphate as a function of pH, Mg2+ ion concentration, and ionic strength.
    Phillips RC; George P; Rutman RJ
    J Biol Chem; 1969 Jun; 244(12):3330-42. PubMed ID: 5792663
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of adenine nucleotides and phosphate on adenosine triphosphate sulphurylase from Anabaena cylindrica.
    Sawhney SK; Nicholas DJ
    Biochem J; 1977 Apr; 164(1):161-7. PubMed ID: 406902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Acid-soluble phosphate compounds (ATP, ADP, AMP, CrP and orthophosphate) in the mouse kidney using different methods of preparation and under the influence of urea].
    GOEGGEL KH; HIERHOLZER G; FREY J
    Z Gesamte Exp Med; 1961; 135():41-50. PubMed ID: 13899456
    [No Abstract]   [Full Text] [Related]  

  • 16. Electrochromatographic separation of inorganic phosphate, adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate.
    SATO TR; THOMSON JF; DANFORTH WF
    Anal Biochem; 1963 Jun; 5():542-7. PubMed ID: 13986747
    [No Abstract]   [Full Text] [Related]  

  • 17. Formation of high-energy phosphate bonds effected by electron-deficient sulfides.
    Glass RS; Williams EB; Wilson GS
    Biochemistry; 1974 Jul; 13(14):2800-5. PubMed ID: 4367173
    [No Abstract]   [Full Text] [Related]  

  • 18. Significance of ADP-ATP exchange for the hexokinase reaction mechanism.
    Solomon F; Rose IA
    Arch Biochem Biophys; 1971 Nov; 147(1):349-50. PubMed ID: 4255952
    [No Abstract]   [Full Text] [Related]  

  • 19. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate.
    Alberty RA
    J Biol Chem; 1968 Apr; 243(7):1337-43. PubMed ID: 5647260
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.