These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 4973545)

  • 21. Adaptive transcutaneous power delivery for an artificial anal sphincter system.
    Zan P; Yan G; Liu H; Luo N; Zhao Y
    J Med Eng Technol; 2009; 33(2):136-41. PubMed ID: 19085203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrahigh power electromagnetic energy transport into the body.
    Schuder JC; Gold JH; Stephenson HE
    Trans Am Soc Artif Intern Organs; 1971; 17():406-10. PubMed ID: 5158125
    [No Abstract]   [Full Text] [Related]  

  • 23. Implantable nuclear power sources for artificial organs. I. Physiologic monitoring and pathologic effects.
    Sandberg GW; Huffman FN; Norman JC
    Trans Am Soc Artif Intern Organs; 1970; 16():172-9. PubMed ID: 5454162
    [No Abstract]   [Full Text] [Related]  

  • 24. [An original device to control the functioning of artificial "pacemakers": the pacemaker control].
    Mazzoni P; De Bellis F
    Policlinico Prat; 1968 Aug; 75(33):1061-72. PubMed ID: 5736918
    [No Abstract]   [Full Text] [Related]  

  • 25. Electrochemical behavior of metals as stimulus electrodes.
    Levine SN
    J Biomed Mater Res; 1967 Mar; 1(1):27-31. PubMed ID: 5605613
    [No Abstract]   [Full Text] [Related]  

  • 26. Direct oxidation of sulfur-containing fuels in a solid oxide fuel cell.
    Kim H; Vohs JM; Gorte RJ
    Chem Commun (Camb); 2001 Nov; (22):2334-5. PubMed ID: 12240062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A transcutaneous power transformer.
    Myers GH; Reed GE; Thumin A; Fascher S; Cortes L
    Trans Am Soc Artif Intern Organs; 1968; 14():210-4. PubMed ID: 5701532
    [No Abstract]   [Full Text] [Related]  

  • 28. Implantable bio-electrochemical power sources.
    Rao JR; Richter G
    Naturwissenschaften; 1974 May; 61(5):200-6. PubMed ID: 4602273
    [No Abstract]   [Full Text] [Related]  

  • 29. A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell.
    Adams LA; Poynton SD; Tamain C; Slade RC; Varcoe JR
    ChemSusChem; 2008; 1(1-2):79-81. PubMed ID: 18605667
    [No Abstract]   [Full Text] [Related]  

  • 30. Artificial gills for robots: MFC behaviour in water.
    Ieropoulos I; Melhuish C; Greenman J
    Bioinspir Biomim; 2007 Sep; 2(3):S83-93. PubMed ID: 17848787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combinatorial approach toward high-throughput analysis of direct methanol fuel cells.
    Jiang R; Rong C; Chu D
    J Comb Chem; 2005; 7(2):272-8. PubMed ID: 15762756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase.
    Yuhashi N; Tomiyama M; Okuda J; Igarashi S; Ikebukuro K; Sode K
    Biosens Bioelectron; 2005 Apr; 20(10):2145-50. PubMed ID: 15741089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrazine-air fuel cells. Hydrazine-air fuel cells emerge from the laboratory.
    Evans GE; Kordesch KV
    Science; 1967 Dec; 158(3805):1148-52. PubMed ID: 6057287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic device for the detection of glucose using a micro direct methanol fuel cell as an amperometric detection power source.
    Ito T; Kunimatsu M; Kaneko S; Ohya S; Suzuki K
    Anal Chem; 2007 Feb; 79(4):1725-30. PubMed ID: 17297980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell.
    Kakehi N; Yamazaki T; Tsugawa W; Sode K
    Biosens Bioelectron; 2007 Apr; 22(9-10):2250-5. PubMed ID: 17166711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Future directions of cardiac pacemaker research--a survey.
    Flink RC
    Med Instrum; 1984; 18(1):25-8. PubMed ID: 6708852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis.
    Randolph KL; Dean AM
    Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerospace toxicology. I. Propellant toxicology.
    Back KC
    Fed Proc; 1970; 29(6):2000-5. PubMed ID: 4991638
    [No Abstract]   [Full Text] [Related]  

  • 40. Implantable nuclear fuel capsules for artificial hearts: in vivo dosimetry.
    Norman JC; Covelli VH; Bernhard WF; Spira J
    Surg Forum; 1968; 19():140-1. PubMed ID: 5718588
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.