These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 4974343)

  • 61. Comparative study of various neutral proteinases from microorganisms: specificity with oligopeptides.
    Morihara K; Tsuzuki H
    Arch Biochem Biophys; 1971 Sep; 146(1):291-6. PubMed ID: 5004124
    [No Abstract]   [Full Text] [Related]  

  • 62. Comparative properties of some histidases.
    Cornell NW; Villee CA
    Comp Biochem Physiol; 1968 Nov; 27(2):603-7. PubMed ID: 4991165
    [No Abstract]   [Full Text] [Related]  

  • 63. Specificity of leucyl-tRNA and synthetase in plants.
    Cherry JH; Osborne DJ
    Biochem Biophys Res Commun; 1970 Aug; 40(4):763-9. PubMed ID: 5531402
    [No Abstract]   [Full Text] [Related]  

  • 64. Role of sodium ions in phenol red transport by renal tubules of the goldfish.
    Hoshi T; Hayashi H
    Jpn J Physiol; 1970 Dec; 20(6):683-96. PubMed ID: 5313780
    [No Abstract]   [Full Text] [Related]  

  • 65. Inactivation and reactivation of ribosomal subunits: amino acyl-transfer RNA binding activity of the 30 s subunit of Escherichia coli.
    Zamir A; Miskin R; Elson D
    J Mol Biol; 1971 Sep; 60(2):347-64. PubMed ID: 4938735
    [No Abstract]   [Full Text] [Related]  

  • 66. Preparation and properties of active membrane systems from various species of bacteria.
    Nagata Y; Mizuno S; Maruo B
    J Biochem; 1966 Apr; 59(4):404-10. PubMed ID: 4959362
    [No Abstract]   [Full Text] [Related]  

  • 67. The effect of cations on ammonia accumulation in brain cortex slices.
    RYBOVA R
    J Neurochem; 1959 Oct; 4():304-10. PubMed ID: 14440446
    [No Abstract]   [Full Text] [Related]  

  • 68. Active transport by the cecropia midgut. IV. Specificity of the transport mechanism for potassium.
    Nedergaard S; Harvey WR
    J Exp Biol; 1968 Feb; 48(1):13-24. PubMed ID: 5648812
    [No Abstract]   [Full Text] [Related]  

  • 69. Evolutionary implications of different types of microbial enzymology for L-tyrosine biosynthesis.
    Jensen RA; Pierson DL
    Nature; 1975 Apr; 254(5502):667-71. PubMed ID: 123637
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of dietary potassium, rubidium or sodium on the retention time of radiocesium in rats.
    Johnson JE; Garner D; Ward GM
    Proc Soc Exp Biol Med; 1968 Mar; 127(3):857-60. PubMed ID: 5651147
    [No Abstract]   [Full Text] [Related]  

  • 71. Kinetic studies with phosphotransacetylase. V. The mechanism of activation by univalent cations.
    Kyrtopoulos SA; Satchell DP
    Biochim Biophys Acta; 1973 Sep; 321(1):126-42. PubMed ID: 4750760
    [No Abstract]   [Full Text] [Related]  

  • 72. Isolation of 5-oxoprolinase from a prokaryote.
    Van der Werf P; Meister A
    Biochem Biophys Res Commun; 1974 Jan; 56(1):90-6. PubMed ID: 4823446
    [No Abstract]   [Full Text] [Related]  

  • 73. Inhibition by sodium and lithium in osmophilic yeasts.
    Rodréguez-Navarro A
    Antonie Van Leeuwenhoek; 1971; 37(2):225-31. PubMed ID: 5314555
    [No Abstract]   [Full Text] [Related]  

  • 74. The stimulatory effect of ammonium or potassium ions on the activity of leucyl-tRNA synthetase from Escherichia coli.
    Yu CT; Hirsh D
    Biochim Biophys Acta; 1967 Jun; 142(1):149-54. PubMed ID: 4860477
    [No Abstract]   [Full Text] [Related]  

  • 75. The catalytic properties of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis.
    Calendar R; Berg P
    Biochemistry; 1966 May; 5(5):1690-5. PubMed ID: 4289778
    [No Abstract]   [Full Text] [Related]  

  • 76. Cation- and anion-dependent reassociation of formyltetrahydrofolate synthetase subunits.
    Harmony JA; Shaffer PJ; Himes RH
    J Biol Chem; 1974 Jan; 249(2):394-401. PubMed ID: 4809524
    [No Abstract]   [Full Text] [Related]  

  • 77. Studies on amino-acyl-tRNA synthetases from Pseudomonase aeruginosa. II. Properties of leucyl-, and tyrosyl-tRNA synthetases.
    Kaziro Y; Takahashi Y; Inoue N
    J Biochem; 1968 Aug; 64(2):181-8. PubMed ID: 4974343
    [No Abstract]   [Full Text] [Related]  

  • 78. Studies on amino-acyl-sRNA synthetases from Pseudomonas and methionyl-sRNA. I. Partial purification of leucyl-, phenylalanyl-, tyrosyl-, and synthetases.
    Takahashi Y; Kuzuya M; Kaziro Y
    J Biochem; 1967 Sep; 62(3):328-38. PubMed ID: 4968455
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.