These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 4974392)

  • 21. Preliminary studies of the metabolic activity of purified suspensions of Mycobacterium leprae.
    Khanolkar SR
    J Gen Microbiol; 1982 Feb; 128(2):423-5. PubMed ID: 7042905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potassium transport and the relationship between intracellular potassium concentration and amino acid uptake by cells of a marine pseudomonad.
    Thompson J; MacLeod RA
    J Bacteriol; 1974 Nov; 120(2):598-603. PubMed ID: 4455685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of aromatic amino acid pools in Escherichia coli K-12.
    Brown KD
    J Bacteriol; 1970 Oct; 104(1):177-88. PubMed ID: 4919744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport of amino acids and calcium in the fungus, Phytophthora infestans.
    Sysuev VA; Kholodenko VP; Okorokov LA
    Biokhimiia; 1977 Jun; 42(6):1014-9. PubMed ID: 889970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chloramphenicol-resistant variants of Pseudomonas aeruginosa defective in amino acid transport.
    Irvin JE; Ingram JM
    Can J Biochem; 1980 Oct; 58(10):1165-71. PubMed ID: 6780163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of action of the fungicide thiabendazole, 2-(4'-thiazolyl) benzimidazole.
    Allen PM; Gottlieb D
    Appl Microbiol; 1970 Dec; 20(6):919-26. PubMed ID: 5531164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli.
    Murray KD; Bremer H
    J Mol Biol; 1996 May; 259(1):41-57. PubMed ID: 8648647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular biology of amino-acid transport in bacteria.
    Antonucci TK; Oxender DL
    Adv Microb Physiol; 1986; 28():145-80. PubMed ID: 3101416
    [No Abstract]   [Full Text] [Related]  

  • 29. Simultaneous biosynthesis of pyocyanine, phenazine-1-carboxylic acid, and oxychloroaphine from labelled substrates by Pseudomonas aeruginosa Mac 436.
    Chang PC; Blackwood AC
    Can J Biochem; 1968 Aug; 46(8):925-9. PubMed ID: 4970528
    [No Abstract]   [Full Text] [Related]  

  • 30. Production of exotoxin A by Pseudomonas aeruginosa in a chemically defined medium.
    DeBell RM
    Infect Immun; 1979 Apr; 24(1):132-8. PubMed ID: 110687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth hormone stimulation of amino acid transport and utilization by the perfused rat liver.
    Jefferson LS; Schworer CM; Tolman EL
    J Biol Chem; 1975 Jan; 250(1):197-204. PubMed ID: 1141204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of chemoautotrophic metabolism. II. Competition between amino acids for incorporation into Thiobacillus.
    Kelly DP
    Arch Mikrobiol; 1969; 69(4):343-59. PubMed ID: 4984547
    [No Abstract]   [Full Text] [Related]  

  • 33. The metabolism of gamma-aminobutyrate and glucose in potassium ion-stimulated brain tissue in vitro.
    Machiyama Y; Balázs R; Hammond BJ; Julian T; Richter D
    Biochem J; 1970 Feb; 116(3):469-81. PubMed ID: 5435691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Up-regulating pyocyanin production by amino acid addition for early electrochemical identification of Pseudomonas aeruginosa.
    Sismaet HJ; Webster TA; Goluch ED
    Analyst; 2014 Sep; 139(17):4241-6. PubMed ID: 24998317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acid utilization and glutamic acid synthesis by variants of Pseudomonas aeruginosa.
    WILLIAMSON CK
    J Am Pharm Assoc Am Pharm Assoc; 1957 May; 46(5):307-9. PubMed ID: 13502187
    [No Abstract]   [Full Text] [Related]  

  • 36. Mutational separation of transport systems for branched-chain amino acids in Pseudomonas aeruginosa.
    Hoshino T; Kageyama M
    J Bacteriol; 1982 Aug; 151(2):620-8. PubMed ID: 6807957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid transport by the filamentous fungus Arthrobotrys conoides.
    Gupta RK; Pramer D
    J Bacteriol; 1970 Jul; 103(1):120-30. PubMed ID: 5463678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporation of N-formylmethionine into peptides by Pseudomonas aeruginosa extracts.
    Migita LK; Doi RH
    Biochim Biophys Acta; 1970 Jan; 199(1):248-55. PubMed ID: 4983994
    [No Abstract]   [Full Text] [Related]  

  • 39. Proline transport by Pseudomonas aeruginosa.
    Kay WW; Gronlund AF
    Biochim Biophys Acta; 1969; 193(2):444-55. PubMed ID: 4981907
    [No Abstract]   [Full Text] [Related]  

  • 40. A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa PAO1.
    Sage AE; Proctor WD; Phibbs PV
    J Bacteriol; 1996 Oct; 178(20):6064-6. PubMed ID: 8830708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.