These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4976382)

  • 1. The effect of dinitrophenol and other phosphorylation uncouplers on the birefringence of the mitotic apparatus of marine eggs.
    Sawada N; Rebhun LI
    Exp Cell Res; 1969 Apr; 55(1):33-8. PubMed ID: 4976382
    [No Abstract]   [Full Text] [Related]  

  • 2. Augmentation and dispersion of the in vivo mitotic apparatus of living marine eggs.
    Rebhun LI; Sawada N
    Protoplasma; 1969; 68(1):1-22. PubMed ID: 5346998
    [No Abstract]   [Full Text] [Related]  

  • 3. ATP level and cleavage of sea urchin eggs Strongylocentrotus dröbachiensis (O. F. Müller).
    Zotin AI; Milman LS; Faustov VS
    Exp Cell Res; 1965 Sep; 39(2):567-76. PubMed ID: 4220938
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of sodium and potassium ions on mitochondrial oxidative phosphorylation. Studies with arsenate.
    Sandoval F; Gómez-Puyou A; Tuena M; Chávez E; Peña A
    Biochemistry; 1970 Feb; 9(3):684-9. PubMed ID: 4244467
    [No Abstract]   [Full Text] [Related]  

  • 5. Energy-limitation of a sodium-independent amino acid transport in ovarian oocytes of the frog.
    Merriam RW; Pollack G
    J Cell Physiol; 1969 Feb; 73(1):1-7. PubMed ID: 5765775
    [No Abstract]   [Full Text] [Related]  

  • 6. [The effect of x-rays on the sensitivity of Paramecium caudatum to metabolic inhibitors].
    Kovaleva NE
    Tsitologiia; 1966; 8(5):629-38. PubMed ID: 5974627
    [No Abstract]   [Full Text] [Related]  

  • 7. The effects of 2,4-dinitrophenol on mitochondrial oxidations.
    Chappell JB
    Biochem J; 1964 Feb; 90(2):237-48. PubMed ID: 5890939
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of uncouplers of oxidative phosphorylation on sodium transport in the proximal renal tubule of the rat.
    Hernandez J; Capek K; Heller J; Nováková A
    Experientia; 1969 Feb; 25(2):125. PubMed ID: 5786077
    [No Abstract]   [Full Text] [Related]  

  • 9. Uncouplers of rat-liver mitochondrial oxidative phosphorylation.
    Parker VH
    Biochem J; 1965 Dec; 97(3):658-62. PubMed ID: 5881655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the in vivo mitotic apparatus by glycols and metabolic inhibitors.
    Rebhun LI; Jemiolo D; Ivy N; Mellon M; Nath J
    Ann N Y Acad Sci; 1975 Jun; 253():362-77. PubMed ID: 1096720
    [No Abstract]   [Full Text] [Related]  

  • 11. Inactivation of coupled respiration of mitochondria by inorganic arsenate and partial restoration by ATP.
    Bhuvaneswaran C; Ho CH; Wadkins CL
    Biochem Biophys Res Commun; 1972 Nov; 49(3):690-7. PubMed ID: 4638748
    [No Abstract]   [Full Text] [Related]  

  • 12. Reversal of azide inhibition by uncouplers.
    Wilson DF; Chance B
    Biochem Biophys Res Commun; 1966 Jun; 23(5):751-6. PubMed ID: 4164336
    [No Abstract]   [Full Text] [Related]  

  • 13. Relation of ATP and creatine phosphate to fast axoplasmic transport in mammalian nerve.
    Sabri MI; Ochs S
    J Neurochem; 1972 Dec; 19(12):2821-8. PubMed ID: 4119914
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of inhibitors of energy metabolism on the growth of one-cell rabbit ova to blastocysts in vitro.
    Kane MT; Buckley NJ
    J Reprod Fertil; 1977 Mar; 49(2):261-6. PubMed ID: 557551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of uncouplers of oxidative phosphorylation on oxygen uptake, ubiquinone redox status and energy-rich phosphate levels of isolated atria.
    Lechner V; Siess M; Hoffmann PC
    Eur J Biochem; 1970 Jan; 12(1):117-25. PubMed ID: 5434277
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of long-chain fatty acids on orthophosphate-adenosine 5'-triphosphate exchange activity associated with oxidative phosphorylation.
    Falcone AB; Mao RL
    Biochim Biophys Acta; 1965 Aug; 105(2):233-45. PubMed ID: 4221368
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action.
    Mitchell RA; Chang BF; Huang CH; DeMaster EG
    Biochemistry; 1971 May; 10(11):2049-54. PubMed ID: 4327397
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of substrates and inhibitors on the rate of respiration of the infective larvae of Strongyloides ratti Sandground, 1925.
    Barrett J
    Parasitology; 1969 May; 59(2):343-7. PubMed ID: 4306044
    [No Abstract]   [Full Text] [Related]  

  • 19. Energetic leukocyte metabolism. II. Incorporation of phosphate-P32 into leukocytes and identification of P-32 labelled compounds by high voltage electrophoresis.
    Aleyassine H; Frei J
    Enzymol Biol Clin (Basel); 1966; 7(1):89-97. PubMed ID: 5296866
    [No Abstract]   [Full Text] [Related]  

  • 20. Rate of uncoupler-induced hydrolysis of adenosine triphosphate in mitochondria.
    Kemp A
    Biochem J; 1970 Feb; 116(4):10P. PubMed ID: 4190929
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.