These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4976464)

  • 21. Lipid composition of the zoospores of Blastocladiella amersonii.
    Mills GL; Cantino EC
    J Bacteriol; 1974 Apr; 118(1):192-201. PubMed ID: 4821093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipids of antibiotic-sensitive and -resistant strains of Pseudomonas aeruginosa.
    Anderes EA; Sandine WE; Elliker PR
    Can J Microbiol; 1971 Nov; 17(11):1357-65. PubMed ID: 5003246
    [No Abstract]   [Full Text] [Related]  

  • 23. LIPIDS OF SARCINA LUTEA. I. FATTY ACID COMPOSITION OF THE EXTRACTABLE LIPIDS.
    HUSTON CK; ALBRO PW
    J Bacteriol; 1964 Aug; 88(2):425-32. PubMed ID: 14203360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Fatty acid composition of Fusidium coccineum lipids].
    Konova IV; Beliaeva TV; Rudakova LM; Bartoshevich IuE
    Antibiot Med Biotekhnol; 1985 Nov; 30(11):816-9. PubMed ID: 4091516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neutral lipids, their fatty acids, and the sterols of the marine ciliated protozoon, Parauronema acutum.
    Sul D; Kaneshiro ES; Jayasimhulu K; Erwin JA
    J Eukaryot Microbiol; 2000; 47(4):373-8. PubMed ID: 11140451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells.
    Jollow D; Kellerman GM; Linnane AW
    J Cell Biol; 1968 May; 37(2):221-30. PubMed ID: 4297785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen.
    Smittle RB; Gilliland SE; Speck ML; Walter WM
    Appl Microbiol; 1974 Apr; 27(4):738-43. PubMed ID: 4363555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of substrate on the lipids of the hydrocarbon-utilizing Mycobacterium vaccae.
    Vestal JR; Perry JJ
    Can J Microbiol; 1971 Apr; 17(4):445-9. PubMed ID: 4324207
    [No Abstract]   [Full Text] [Related]  

  • 29. Assimilation of aliphatic hydrocarbons by Candida tropicalis. II. Fatty acid profiles from cells grown on substrates of different chain length.
    Hug H; Fiechter A
    Arch Mikrobiol; 1973; 88(2):87-96. PubMed ID: 4684077
    [No Abstract]   [Full Text] [Related]  

  • 30. Growth of Candida albicans on hydrocarbons: influence on lipids and sterols.
    Sorkhoh NA; Ghannoum MA; Ibrahim AS; Stretton RJ; Radwan SS
    Microbios; 1990; 64(260-261):159-71. PubMed ID: 2084494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cuticular lipids of insects. VI. Cuticular lipids of the grasshoppers Melanoplus sanguinipes and Melanoplus packardii.
    Soliday CL; Blomquist GJ; Jackson LL
    J Lipid Res; 1974 Jul; 15(4):399-405. PubMed ID: 4851234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatty acid composition of Arthrobacter Simplex grown on hydrocarbons. Occurrence of -hydroxy-fatty acids.
    Yano I; Furukawa Y; Kusunose M
    Eur J Biochem; 1971 Nov; 23(2):220-8. PubMed ID: 5156370
    [No Abstract]   [Full Text] [Related]  

  • 33. Oxidation of 1-tetradecene by Pseudomonas aeruginosa.
    Markovetz AJ; Klug MJ; Forney FW
    J Bacteriol; 1967 Apr; 93(4):1289-93. PubMed ID: 4962057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of surface-active lipids by Corynebacterium lepus.
    Cooper DG; Zajic JE; Gerson DF
    Appl Environ Microbiol; 1979 Jan; 37(1):4-10. PubMed ID: 760639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assimilation of hydrocarbons. I. Proportion of fatty acids in the cell fat.
    Pelechová J; Krumphanzl V; Uher J; Dyr J
    Folia Microbiol (Praha); 1971; 16(2):103-9. PubMed ID: 5102830
    [No Abstract]   [Full Text] [Related]  

  • 36. [Lipid fatty acid composition of fungi in the genus Aspergillus grown on media with various sources of nitrogen].
    Kolesnikova IG; Tolstikova GV
    Mikrobiologiia; 1984; 53(5):826-9. PubMed ID: 6513821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans.
    Napolitano R; Juárez MP
    Arch Biochem Biophys; 1997 Aug; 344(1):208-14. PubMed ID: 9244399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of hydrocarbon structure on fatty acid, fatty alcohol, and beta-hydroxy acid composition in the hydrocarbon-degrading bacterium Marinobacter hydrocarbonoclasticus.
    Soltani M; Metzger P; Largeau C
    Lipids; 2004 May; 39(5):491-505. PubMed ID: 15506246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Group and fatty acid composition of the lipids in yeasts of the genus Candida].
    Malkhas'ian SS; Nechaev AP; Gavrilova NN; Zotova EE; Doronina OD
    Prikl Biokhim Mikrobiol; 1982; 18(5):621-9. PubMed ID: 7145873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica.
    Klug MJ; Markovetz AJ
    J Bacteriol; 1967 Jun; 93(6):1847-52. PubMed ID: 6025303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.