These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4976692)

  • 61. Participation of acid phospholipids in protein translocation across the bacterial cytoplasmic membrane.
    Nesmeyanova MA; Bogdanov MV
    FEBS Lett; 1989 Nov; 257(2):203-7. PubMed ID: 2684685
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Phospholipids and sphingosidolipids in membranes and their role in cellular interactions].
    Douste-Blazy L; Chap H
    Pathol Biol (Paris); 1973 Nov; 21():Suppl:89-95. PubMed ID: 4587022
    [No Abstract]   [Full Text] [Related]  

  • 63. Membrane digestion and peptide transport.
    Ugolev AM
    Ciba Found Symp; 1971; ():123-43. PubMed ID: 5212096
    [No Abstract]   [Full Text] [Related]  

  • 64. Metabolism and function of the membrane phospholipids of Escherichia coli.
    Cronan JE; Vagelos PR
    Biochim Biophys Acta; 1972 Feb; 265(1):25-60. PubMed ID: 4552305
    [No Abstract]   [Full Text] [Related]  

  • 65. [Influence of linoleic acid (18:2 n-6) and alpha-linolenic acid (18:3 n-3) on the composition, permeability and fluidity of cardiac phospholipids in the rat: study using membrane models (liposomes)].
    Rocquelin G; Yoyo N; Ducruet JM
    Reprod Nutr Dev (1980); 1986; 26(1A):97-112. PubMed ID: 2871601
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The concentration polarization effect in a multicomponent electrolyte solution--the human erythrocyte.
    Levin RL; Cravalho EG; Huggins CE
    J Theor Biol; 1978 Mar; 71(2):225-54. PubMed ID: 642527
    [No Abstract]   [Full Text] [Related]  

  • 67. [Cell membranes and their role in the cellular functioning].
    Policard A
    Pathol Biol; 1968 Nov; 16(21):973-7. PubMed ID: 4891840
    [No Abstract]   [Full Text] [Related]  

  • 68. Reconstitution of model membranes from phospholipid and outer membrane proteins of Proteus mirabilis. Role of proteins in the formation of hydrophilic pores and protection of membranes against detergents.
    Nixdorff K; Fitzer H; Gmeiner J; Martin HH
    Eur J Biochem; 1977 Nov; 81(1):63-9. PubMed ID: 338302
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Mechanism of the membrane-stabilizing effect of 1-(chloromethyl)silatrane].
    Pisarskiĭ IuV; Kazimirovskaia VB; Voronkov MG
    Dokl Akad Nauk SSSR; 1987; 293(3):724-7. PubMed ID: 2953584
    [No Abstract]   [Full Text] [Related]  

  • 70. The role of phospholipids in the manifestation of lysosomal enzyme activity.
    Pokrovskii AA; Kon IY; Solov'ev VN
    Bull Exp Biol Med; 1974 Sep; 77(3):265-8. PubMed ID: 4416473
    [No Abstract]   [Full Text] [Related]  

  • 71. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The permeability and the effect of acyl-chain length for phospholipid bilayers containing cholesterol: theory and experiment.
    Corvera E; Mouritsen OG; Singer MA; Zuckermann MJ
    Biochim Biophys Acta; 1992 Jun; 1107(2):261-70. PubMed ID: 1504071
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evidence implicating a membrane ATPase in the control of passive permeability of excitable cells.
    Bowler K; Duncan CJ
    J Cell Physiol; 1967 Aug; 70(1):121-6. PubMed ID: 4230915
    [No Abstract]   [Full Text] [Related]  

  • 74. Biochemical and biophysical studies on the interaction of a membrane-bound enzyme, D-lactate dehydrogenase from Escherichia coli, with phospholipids.
    Fung LW; Pratt EA; Ho C
    Biochemistry; 1979 Jan; 18(2):317-24. PubMed ID: 369600
    [No Abstract]   [Full Text] [Related]  

  • 75. Apoptotic cells subjected to cold/warming exposure disorganize apoptotic microtubule network and undergo secondary necrosis.
    Oropesa-Ávila M; Fernández-Vega A; de la Mata M; Garrido-Maraver J; Cotán D; Paz MV; Pavón AD; Cordero MD; Alcocer-Gómez E; de Lavera I; Lema R; Zaderenko AP; Sánchez-Alcázar JA
    Apoptosis; 2014 Sep; 19(9):1364-77. PubMed ID: 25027509
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Action of phospholipids and leucocidin on the p-nitrophenyl phosphatase of the leucocyte membrane.
    Woodin AM; Wieneke AA
    Biochim Biophys Acta; 1971 Jun; 233(3):702-15. PubMed ID: 4329759
    [No Abstract]   [Full Text] [Related]  

  • 77. GLOBULAR LIPID MICELLES AND CELL MEMBRANES.
    LUCY JA
    J Theor Biol; 1964 Sep; 7():360-73. PubMed ID: 14212282
    [No Abstract]   [Full Text] [Related]  

  • 78. Biological membranes.
    Chapman D
    Thromb Res; 1974 Jun; 4(0):suppl 1:37-40. PubMed ID: 4602231
    [No Abstract]   [Full Text] [Related]  

  • 79. Dynamic aspects of biological membranes.
    Keith AD; Snipes W
    Horiz Biochem Biophys; 1977; 4():31-62. PubMed ID: 413773
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane.
    Mioka T; Fujimura-Kamada K; Mizugaki N; Kishimoto T; Sano T; Nunome H; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2018 May; 29(10):1203-1218. PubMed ID: 29540528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.