These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 4977226)
1. Malate utilization by a group D Streptococcus. II. Evidence for allosteric inhibition of an inducible malate dehydrogenase (decarboxylating) by ATP and glycolytic intermediate products. London J; Meyer EY Biochim Biophys Acta; 1969 Apr; 178(2):205-12. PubMed ID: 4977226 [No Abstract] [Full Text] [Related]
2. Allosteric control of a Lactobacillus malate dehydrogenase (decarboxylating) by two glycolytic intermediate products. London J; Meyer E; Kulczyk S Biochim Biophys Acta; 1970 Sep; 212(3):512-4. PubMed ID: 4318598 [No Abstract] [Full Text] [Related]
3. Malate utilization by a group D Streptococcus: physiological properties and purification of an inducible malic enzyme. London J; Meyer EY J Bacteriol; 1969 May; 98(2):705-11. PubMed ID: 4306540 [TBL] [Abstract][Full Text] [Related]
4. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. I. Control characteristics of malate dehydrogenase. Sanwal BD J Biol Chem; 1969 Apr; 244(7):1831-7. PubMed ID: 4305466 [No Abstract] [Full Text] [Related]
5. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis. Brown AT; Wittenberger CL J Bacteriol; 1971 May; 106(2):456-67. PubMed ID: 4396792 [TBL] [Abstract][Full Text] [Related]
6. Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis. Brown AT; Wittenberger CL J Bacteriol; 1972 Jan; 109(1):106-15. PubMed ID: 4400413 [TBL] [Abstract][Full Text] [Related]
8. Allosteric inhibition of NADP-linked malic enzyme from an extreme halophile by acetyl-CoA. Vidal MC; Cazzulo JJ FEBS Lett; 1972 Oct; 26(1):257-60. PubMed ID: 4404629 [No Abstract] [Full Text] [Related]
9. Purification and properties of the human erythrocyte malic dehydrogenase. Utilization of L-malate by human erythrocytes. Snyder LM; Reddy WJ J Lab Clin Med; 1971 Mar; 77(3):459-69. PubMed ID: 5553730 [No Abstract] [Full Text] [Related]
10. Malate dehydrogenase and aspartate aminotransferase of Phycomyces blakesleeanus. Sulebele G; Silverstein E Arch Biochem Biophys; 1969 Sep; 133(2):425-35. PubMed ID: 5820995 [No Abstract] [Full Text] [Related]
11. Regulatory characteristics of the diphosphopyridine nucleotide-specific malic enzyme of Escherichia coli. Sanwal BD J Biol Chem; 1970 Mar; 245(5):1212-6. PubMed ID: 4313705 [No Abstract] [Full Text] [Related]
12. An adenosine 5'-triphosphate:hexose 6-phosphotransferase specific for D-mannose and D-fructose from Leuconostoc mesenteroides. Purification, properties, and evidence for a single enzyme. Sapico V; Anderson RL J Biol Chem; 1967 Nov; 242(21):5086-92. PubMed ID: 6058948 [No Abstract] [Full Text] [Related]
13. Fructose-1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties. Brown AT; Wittenberger CL J Bacteriol; 1972 May; 110(2):604-15. PubMed ID: 4336691 [TBL] [Abstract][Full Text] [Related]
14. Malic dehydrogenase isoenzymes in green stem tissue of Opuntia: isolation and characterization. Mukerji SK; Ting IP Arch Biochem Biophys; 1969 May; 131(2):336-51. PubMed ID: 4306822 [No Abstract] [Full Text] [Related]
15. Purificationa and properties of a fructose-1,6-diphosphate-activated lactate dehydrogenase from Streptococcus faecalis. Wittenberger CL; Angelo N J Bacteriol; 1970 Mar; 101(3):717-24. PubMed ID: 4314543 [TBL] [Abstract][Full Text] [Related]
16. 5-keto-D-fructose. VI. A specific reduced nicotinamide adenine dinucleotide phosphate-linked reductase from yeast. Englard S; Kaysen G; Avigad G J Biol Chem; 1970 Mar; 245(6):1311-8. PubMed ID: 4392628 [No Abstract] [Full Text] [Related]