These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 4977987)

  • 21. The resistance of Pseudomonas aeruginosa to chloramphenicol.
    Ingram JM; Hassan HM
    Can J Microbiol; 1975 Aug; 21(8):1185-91. PubMed ID: 809123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translocation of the chloramphenicol-resistance determinant in Staphylococcus aureus.
    Młynarczyk A; Młynarczyk G; Sawicka-Grzelak A; Osowiecki H
    Acta Microbiol Pol; 1986; 35(1-2):49-56. PubMed ID: 2426925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmid-mediated mechanisms of resistance to aminoglycoside-aminocyclitol antibiotics and to chloramphenicol in group D streptococci.
    Courvalin PM; Shaw WV; Jacob AE
    Antimicrob Agents Chemother; 1978 May; 13(5):716-25. PubMed ID: 96732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chloramphenicol resistance by enzymatic acetylation: comparative aspects.
    Shaw WV; Brodsky RF
    Antimicrob Agents Chemother (Bethesda); 1967; 7():257-63. PubMed ID: 4876090
    [No Abstract]   [Full Text] [Related]  

  • 25. Quantitative nonradioactive CAT assays using fluorescent BODIPY 1-deoxychloramphenicol substrates.
    Lefevre CK; Singer VL; Kang HC; Haugland RP
    Biotechniques; 1995 Sep; 19(3):488-93. PubMed ID: 7495564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transduction of drug-resistances in Staphylococcus. II. Transduction of chloramphenicol-resistance in both Staphylococcus aureus and Staphylococcus epidermidis by typing phage 80.
    Goto S; Niwa C; Kuwahara S
    Jpn J Microbiol; 1965 Mar; 9(1):15-9. PubMed ID: 4220625
    [No Abstract]   [Full Text] [Related]  

  • 27. Chloramphenicol acetylation in Streptomyces.
    Shaw WV; Hopwood DA
    J Gen Microbiol; 1976 May; 94(1):159-66. PubMed ID: 932687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resistance mechanism of chloramphenicol in Streptococcus haemolyticus, Streptococcus pneumoniae and Streptococcus faecalis.
    Miyamura S; Ochiai H; Nitahara Y; Nakagawa Y; Terao M
    Microbiol Immunol; 1977; 21(2):69-76. PubMed ID: 16197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae.
    Burns JL; Mendelman PM; Levy J; Stull TL; Smith AL
    Antimicrob Agents Chemother; 1985 Jan; 27(1):46-54. PubMed ID: 3872625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug resistance of staphylococci. Ability of chloramphenicol related compounds to induce chloramphenicol resistance in Staphylococcus aureus.
    Kono M; O'Hara K; Nagawa M; Mitsuhashi S
    Jpn J Microbiol; 1971 May; 15(3):219-27. PubMed ID: 4940316
    [No Abstract]   [Full Text] [Related]  

  • 31. [Effect of detergents on the chloramphenicol inactivation process by resistent bacteria].
    Solov'eva NN; Afinogenov GE; Belousova II; Tereshin IM
    Antibiotiki; 1980 Feb; 25(2):101-4. PubMed ID: 6986841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug resistance of staphylococci. XI. Induction of chloramphenicol resistance by its derivatives and analogues.
    Kono M; Ohara K; Honda M; Mitsuhashi S
    J Antibiot (Tokyo); 1969 Dec; 22(12):603-7. PubMed ID: 5367393
    [No Abstract]   [Full Text] [Related]  

  • 33. Basis of chloramphenicol resistance in naturally isolated resistant staphylococci.
    Suzuki Y; Okamoto S; Kono M
    J Bacteriol; 1966 Sep; 92(3):798-9. PubMed ID: 5922549
    [No Abstract]   [Full Text] [Related]  

  • 34. Biotransformation of antibiotics. II. Investigation of the chloramphenicol acetyltransferase in Streptomyces griseus.
    El-Kersh TA; Plourde JR
    J Antibiot (Tokyo); 1976 Nov; 29(11):1189-98. PubMed ID: 825495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Isolation and purification of the chloramphenicol-acetyltransferase from Y. pestis EV cells with extrachromosomal resistance to the antibiotic by affinity chromatography].
    Korobeĭnik NV; Mishan'kin BN
    Antibiotiki; 1981 Jan; 26(1):28-33. PubMed ID: 6938164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling of transcription to translation in the induced synthesis of beta-galactosidase.
    Mehdi Q; Yudkin MD
    Biochim Biophys Acta; 1967 Nov; 149(1):288-90. PubMed ID: 4867553
    [No Abstract]   [Full Text] [Related]  

  • 37. INDUCIBLE RESISTANCE TO ERYTHROMYCIN IN STAPHYLOCOCCUS AUREUS.
    WEAVER JR; PATTEE PA
    J Bacteriol; 1964 Sep; 88(3):574-80. PubMed ID: 14208490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of chloramphenicol resistance in naturally occurring chloramphenicol resistant bacteria.
    Okamoto S; Suzuki Y
    Jpn J Med Sci Biol; 1968 Jun; 21(3):220-1. PubMed ID: 4881255
    [No Abstract]   [Full Text] [Related]  

  • 39. Esterases in serum-containing growth media counteract chloramphenicol acetyltransferase activity in vitro.
    Sohaskey CD; Barbour AG
    Antimicrob Agents Chemother; 1999 Mar; 43(3):655-60. PubMed ID: 10049283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chloramphenicol-induced stabilization of cat messenger RNA in Bacillus subtilis.
    Dreher J; Matzura H
    Mol Microbiol; 1991 Dec; 5(12):3025-34. PubMed ID: 1809841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.