These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 4982502)

  • 1. Regulation of synthesis of 2,3-dihydroxybenzoic acid in Bacillus subtilis by iron and a biological secondary hydroxamate.
    Byers BR; Lankford CE
    Biochim Biophys Acta; 1968 Oct; 165(3):563-6. PubMed ID: 4982502
    [No Abstract]   [Full Text] [Related]  

  • 2. The mechanism of iron uptake in Bacillus subtilis.
    Peters WJ; Warren RA
    Can J Microbiol; 1970 Dec; 16(12):1285-91. PubMed ID: 5000290
    [No Abstract]   [Full Text] [Related]  

  • 3. Repression of phenolic acid-synthesizing enzymes and its relation to iron uptake in Bacillus subtilis.
    Downer DN; Davis WB; Byers BR
    J Bacteriol; 1970 Jan; 101(1):181-7. PubMed ID: 4983647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Itoic acid synthesis in Bacillus subtilis.
    Peters WJ; Warren RA
    J Bacteriol; 1968 Feb; 95(2):360-6. PubMed ID: 4966543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accumulation of phenolic acids and coproporphyrin by iron-deficient cultures of Bacillus subtilis.
    Peters WJ; Warren RA
    Can J Microbiol; 1970 Dec; 16(12):1179-85. PubMed ID: 5000286
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of iron uptake and deoxyribonucleic acid synthesis by Desferal in a mutant strain of Bacillus subtilis.
    Arceneaux JE; Byers BR
    J Bacteriol; 1977 Mar; 129(3):1639-41. PubMed ID: 403182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of L-arginine by arginine hydroxamate-resistant mutants of Bacillus subtilis.
    Kisumi M; Kato J; Sugiura M; Chibata I
    Appl Microbiol; 1971 Dec; 22(6):987-91. PubMed ID: 5002904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of L-phenylalanine by DL-phenylalanine hydroxamate-resistant Tyr- mutants of Bacillus subtilis.
    McEvoy JJ; Joyce A
    Mol Cell Biochem; 1974 Oct; 4(3):191-5. PubMed ID: 4214999
    [No Abstract]   [Full Text] [Related]  

  • 9. Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium.
    Byers BR; Powell MV; Lankford CE
    J Bacteriol; 1967 Jan; 93(1):286-94. PubMed ID: 4960152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The iron-uptake system of Bacillus subtilis.
    Walsh BL; Warren RA
    Can J Microbiol; 1971 Feb; 17(2):175-7. PubMed ID: 4994092
    [No Abstract]   [Full Text] [Related]  

  • 11. [2,3-dihydroxybenzoic acid and its amino acid derivatives in the culture medium of Klebsiella oxytoca].
    Korth H
    Arch Mikrobiol; 1970; 70(3):297-302. PubMed ID: 5437122
    [No Abstract]   [Full Text] [Related]  

  • 12. The regulation of phenolic acid sysdtness in Bacillus subtilis.
    Walsh BL; Peters WJ; Warren RA
    Can J Microbiol; 1971 Jan; 17(1):53-9. PubMed ID: 4995374
    [No Abstract]   [Full Text] [Related]  

  • 13. Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth-factor activity. I. Isolation and characterization.
    Atkin CL; Neilands JB
    Biochemistry; 1968 Oct; 7(10):3734-9. PubMed ID: 4971459
    [No Abstract]   [Full Text] [Related]  

  • 14. [Deposition of 2,3-dihydroxybenzoic acid and its amino acid derivatives by Klebsiellas and Escherichia coli].
    Korth H; Spieckermann C; Pulverer G
    Med Microbiol Immunol; 1971; 157(1):52-7. PubMed ID: 4947983
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of serine hydroxamate on the growth of Escherichia coli.
    Tosa T; Pizer LI
    J Bacteriol; 1971 Jun; 106(3):966-71. PubMed ID: 4934071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis.
    Wei YH; Wang LF; Chang JS
    Biotechnol Prog; 2004; 20(3):979-83. PubMed ID: 15176908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of iron and molecular oxygen in pulcherrimin synthesis by bacteria.
    Kupfer DG; Uffen RL; Canale-Parola E
    Arch Mikrobiol; 1967 Feb; 56(1):9-21. PubMed ID: 4968608
    [No Abstract]   [Full Text] [Related]  

  • 18. Iron requirements and aluminum sensitivity of an hydroxamic acid-requiring strain of Bacillus megaterium.
    Davis WB; McCauley MJ; Byers BR
    J Bacteriol; 1971 Feb; 105(2):589-94. PubMed ID: 4993339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 10-undecanhydroxamic acid, a hydroxamate derivative of the undecanoic acid, has strong antimicrobial activity through a mechanism that limits iron availability.
    Ammendola S; Lembo A; Battistoni A; Tagliatesta P; Ghisalberti C; Desideri A
    FEMS Microbiol Lett; 2009 May; 294(1):61-7. PubMed ID: 19493009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of iron from ferritin by aceto- and benzohydroxamic acids.
    Gálvez N; Ruiz B; Cuesta R; Colacio E; Domínguez-Vera JM
    Inorg Chem; 2005 Apr; 44(8):2706-9. PubMed ID: 15819556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.