These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 4983644)

  • 21. Second system for potassium transport in Streptococcus faecalis.
    Kobayashi H
    J Bacteriol; 1982 May; 150(2):506-11. PubMed ID: 6279560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of potassium transport by sodium in a mutant of Streptococcus faecalis.
    Harold FM; Baarda JR
    Biochemistry; 1967 Oct; 6(10):3107-10. PubMed ID: 4964360
    [No Abstract]   [Full Text] [Related]  

  • 23. Amplification of the Na+-ATPase of Streptococcus faecalis at alkaline pH.
    Kakinuma Y; Igarashi K
    FEBS Lett; 1990 Feb; 261(1):135-8. PubMed ID: 2137787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Export of Na+ from cells of the halotolerant microalga Dunaliella maritima: Na+/H+ antiporter or primary Na+-pump?
    Shumkova GA; Popova LG; Balnokin YV
    Biochemistry (Mosc); 2000 Aug; 65(8):917-23. PubMed ID: 11002184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interconversion of components of the bacterial proton motive force by electrogenic potassium transport.
    Bakker EP; Mangerich WE
    J Bacteriol; 1981 Sep; 147(3):820-6. PubMed ID: 6268609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protons as substitutes for sodium and potassium in the sodium pump reaction.
    Polvani C; Blostein R
    J Biol Chem; 1988 Nov; 263(32):16757-63. PubMed ID: 2846547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Streptococcus faecalis mutants defective in regulation of cytoplasmic pH.
    Kobayashi H; Unemoto T
    J Bacteriol; 1980 Sep; 143(3):1187-93. PubMed ID: 6157669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Letter: Kinetics of energy-dependent exchange of H+ and K+ in Streptococcus faecalis].
    Martirosov SM; Alikhanian MA
    Biofizika; 1974; 19(1):188-90. PubMed ID: 4215465
    [No Abstract]   [Full Text] [Related]  

  • 29. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K; Hirata H; Harold FM
    J Biol Chem; 1975 Feb; 250(4):1405-12. PubMed ID: 1089658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of morphogenesis in Geodermatophilus by inorganic cations and by organic nitrogenous cations.
    Ishiguro EE; Wolfe RS
    J Bacteriol; 1974 Jan; 117(1):189-95. PubMed ID: 4587602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NHE8 mediates amiloride-sensitive Na+/H+ exchange across mosquito Malpighian tubules and catalyzes Na+ and K+ transport in reconstituted proteoliposomes.
    Kang'ethe W; Aimanova KG; Pullikuth AK; Gill SS
    Am J Physiol Renal Physiol; 2007 May; 292(5):F1501-12. PubMed ID: 17287198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Net uptake of potassium in Neurospora. Exchange for sodium and hydrogen ions.
    Slayman CL; Slayman CW
    J Gen Physiol; 1968 Sep; 52(3):424-43. PubMed ID: 5673302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potassium/proton antiport system of growing Enterococcus hirae at high pH.
    Kakinuma Y; Igarashi K
    J Bacteriol; 1995 Apr; 177(8):2227-9. PubMed ID: 7721716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potassium accumulation and sodium efflux by Porphyra perforata tissues in lithium and magnesium sea water.
    EPPLEY RW
    J Gen Physiol; 1959 Sep; 43(1):29-38. PubMed ID: 13820476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction.
    Harold FM; Baarda JR
    J Bacteriol; 1968 Dec; 96(6):2025-34. PubMed ID: 4177737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium-hydrogen ion exchange in rabbit renal cortical slices incubated in acetate media.
    Macknight AD; McLaughlin CW; Scott RJ
    J Physiol; 1988 Apr; 398():523-41. PubMed ID: 2839675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion extrusion systems in bacteria.
    Rosen BP; Ambudkar SV; Borbolla MG; Chen CM; Houng HS; Mobley HL; Tsujibo H; Zlotnick GW
    Ann N Y Acad Sci; 1985; 456():235-44. PubMed ID: 2418727
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of pH strategy on endo- and exo-metabolome profiles and sodium potassium hydrogen ports of beta-lactamase-producing Bacillus licheniformis.
    Ileri N; Calik P
    Biotechnol Prog; 2006; 22(2):411-9. PubMed ID: 16599555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Na/H exchange in cultured chick heart cells: secondary stimulation of electrogenic transport during recovery from intracellular acidosis.
    Piwnica-Worms D; Jacob R; Shigeto N; Horres CR; Lieberman M
    J Mol Cell Cardiol; 1986 Nov; 18(11):1109-16. PubMed ID: 3025458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrogenic Na+ transport by Enterococcus hirae Na(+)-ATPase.
    Kakinuma Y; Igarashi K
    FEBS Lett; 1995 Feb; 359(2-3):255-8. PubMed ID: 7867809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.