These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 4984069)

  • 1. Autotrophic and heterotrophic metabolism of hydrogenomonas: regulation of autotrophic growth by organic substrates.
    Stukus PE; DeCicco BT
    J Bacteriol; 1970 Feb; 101(2):339-45. PubMed ID: 4984069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixotrophic growth of Hydrogenomonas eutropha.
    Rittenberg SC; Goodman NS
    J Bacteriol; 1969 May; 98(2):617-22. PubMed ID: 4977482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenase and ribulose diphosphate carboxylase during autotrophic, heterotrophic, and mixotrophic growth of scotochromogenic mycobacteria.
    Park SS; DeCicco BT
    J Bacteriol; 1976 Aug; 127(2):731-8. PubMed ID: 956116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autotrophic and heterotrophic metabolism of Hydrogenomonas. I. Growth yields and patterns under dual substrate conditions.
    DeCicco BT; Stukus PE
    J Bacteriol; 1968 Apr; 95(4):1469-75. PubMed ID: 4967200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the synthesis and degradation of ribulose-1,5-diphosphate carboxylase in Hydrogenomonas facilis and Hydrogenomonas eutropha.
    Kuehn GD; McFadden BA
    J Bacteriol; 1968 Mar; 95(3):937-46. PubMed ID: 4966835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing the Lag Phase of Cupriavidus necator Growth under Autotrophic, Heterotrophic, and Mixotrophic Conditions.
    Amer A; Kim Y
    Appl Environ Microbiol; 2023 Feb; 89(2):e0200722. PubMed ID: 36719244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QUANTITATIVE STUDIES OF THE EFFECT OF ORGANIC SUBSTRATES AND 2,4-DINITROPHENOL ON HETEROTROPHIC CARBON DIOXIDE FIXATION IN HYDROGENOMONAS FACILIS.
    MCFADDEN BA; HOMANN HR
    J Bacteriol; 1963 Nov; 86(5):971-7. PubMed ID: 14080809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of autotrophic and heterotrophic carbon dioxide fixation in Hydrogenomonas facilis.
    McFadden BA; Tu CC
    J Bacteriol; 1967 Mar; 93(3):886-93. PubMed ID: 4381635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of autotrophic carbon assimilation in Alcaligenes eutrophus by inactivation and reactivation of phosphoribulokinase.
    Leadbeater L; Bowien B
    J Bacteriol; 1984 Jan; 157(1):95-9. PubMed ID: 6317659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribulose diphosphate carboxylase from autotrophic microorganisms.
    McFadden BA; Denend AR
    J Bacteriol; 1972 May; 110(2):633-42. PubMed ID: 4623310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depression of hydrogenase during limitation of electron donors and derepression of ribulosebisphosphate carboxylase during carbon limitation of Alcaligenes eutrophus.
    Friedrich CG
    J Bacteriol; 1982 Jan; 149(1):203-10. PubMed ID: 6798017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Synthesis of C 4 -dicarboxylic acids from pyruvate by Hydrogenomonas eutropha strain H16].
    Frings W; Schlegel HG
    Arch Mikrobiol; 1971; 79(3):204-19. PubMed ID: 4332831
    [No Abstract]   [Full Text] [Related]  

  • 14. [Routes of incorporation of C14 carbon dioxide into dicarboxylic amino acids during chemosynthesis of Hydrogenomonas eutropha Z-1].
    Romanova AK; Nozhevnikova AN; Vedenina IIa; Doman NG
    Mikrobiologiia; 1970; 39(6):990-5. PubMed ID: 4998105
    [No Abstract]   [Full Text] [Related]  

  • 15. [Adenosine-dependent death of Hydrogenomonas eutropha (Alcaligenes eutrophus) H 16 (author's transl)].
    Kaltwasser H; Glaeser H
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1976; 131(8):678-91. PubMed ID: 828363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans.
    Tabita R; Lundgren DG
    J Bacteriol; 1971 Oct; 108(1):328-33. PubMed ID: 5122808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO2-fixing enzymes in Pseudomonas fluorescens.
    Higa AI; Milrad de Forchetti SR; Cazzulo JJ
    J Gen Microbiol; 1976 Mar; 93(1):69-74. PubMed ID: 816991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NICKEL-DEPENDENT CHEMOLITHOTROPHIC GROWTH OF TWO HYDROGENOMONAS STRAINS.
    BARTHA R; ORDAL EJ
    J Bacteriol; 1965 Apr; 89(4):1015-9. PubMed ID: 14276088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic regulation in Pseudomonas oxalaticus OX1. Autotrophic and heterotrophic growth on mixed substrates.
    Dijkhuizen L; Knight M; Harder W
    Arch Microbiol; 1978 Jan; 116(1):77-83. PubMed ID: 623498
    [No Abstract]   [Full Text] [Related]  

  • 20. Replication of bacteriophage SH-133 in the facultative autotroph Hydrogenomonas facilis. I. Bacteriophage synthesis under heterotrophic, autotrophic, and mixotrophic growth conditions.
    Aron GM; Pootjes CF
    J Virol; 1973 Nov; 12(5):1043-8. PubMed ID: 4203082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.