BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 4984838)

  • 1. [Repression of the malic enzyme by carnitine metabolite in Pseudomonas aeruginosa].
    Kleber HP
    Acta Biol Med Ger; 1969; 23(1):29-36. PubMed ID: 4984838
    [No Abstract]   [Full Text] [Related]  

  • 2. [Damped oscillations in the synthesis of carnitine dehydrogenase by Pseudomonas aeruginosa].
    Kleber HP; Aurich H
    Hoppe Seylers Z Physiol Chem; 1967 Dec; 348(12):1727-9. PubMed ID: 4967877
    [No Abstract]   [Full Text] [Related]  

  • 3. [Kinetics of active carnitine transport in Pseudomonas aeruginosa].
    Aurich H; Kleber HP
    Acta Biol Med Ger; 1970; 24(5):559-68. PubMed ID: 4996628
    [No Abstract]   [Full Text] [Related]  

  • 4. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis.
    Smyth PF; Clarke PH
    J Gen Microbiol; 1975 Sep; 90(1):81-90. PubMed ID: 170365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1.
    Sage AE; Vasil ML
    J Bacteriol; 1997 Aug; 179(15):4874-81. PubMed ID: 9244277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli.
    Murai T; Tokushige M; Nagai J; Katsuki H
    Biochem Biophys Res Commun; 1971 May; 43(4):875-81. PubMed ID: 4397922
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of mitomycin C and other antibiotics on the inducible synthesis of protocatechuate 3,4-oxygenase in Pseudomonas aeruginosa.
    Sakaki Y; Kageyama M; Egami F
    Z Allg Mikrobiol; 1969; 9(2):143-52. PubMed ID: 4191366
    [No Abstract]   [Full Text] [Related]  

  • 8. Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa.
    Hylemon PB; Phibbs PV
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1041-8. PubMed ID: 4626609
    [No Abstract]   [Full Text] [Related]  

  • 9. Reversal of succinate-mediated catabolite repression of alkylsulfatase in Pseudomonas aeruginosa by 2,4-dinitrophenol and by sodium malonate.
    Fitzgerald JW; Kight-Olliff LC; Stewart GJ; Beauchamp NF
    Can J Microbiol; 1978 Dec; 24(12):1567-73. PubMed ID: 106946
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for an inducible active transport of carnitine in Pseudomonas aeruginosa.
    Kleber HP; Aurich H
    Biochem Biophys Res Commun; 1967 Feb; 26(3):255-60. PubMed ID: 4962214
    [No Abstract]   [Full Text] [Related]  

  • 11. The uptake of 2-deoxy-D-glucose by Pseudomonas aeruginosa and its regulation.
    Mukkada AJ; Long GL; Romano AH
    Biochem J; 1973 Feb; 132(2):155-62. PubMed ID: 4199013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Regulation of isocitratelyases of Pseudomonas aeruginosa by carnitine metabolites].
    Kleber HP; Müller E
    Acta Biol Med Ger; 1970; 25(5):749-56. PubMed ID: 5002293
    [No Abstract]   [Full Text] [Related]  

  • 13. Constitutive choline transport in Pseudomonas aeruginosa.
    Lucchesi GI; Pallotti C; Lisa AT; Domenech CE
    FEMS Microbiol Lett; 1998 May; 162(1):123-6. PubMed ID: 9595672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt.
    Velasco-García R; Villalobos MA; Ramírez-Romero MA; Mújica-Jiménez C; Iturriaga G; Muñoz-Clares RA
    Arch Microbiol; 2006 Mar; 185(1):14-22. PubMed ID: 16315011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carnitine resembles choline in the induction of cholinesterase, acid phosphatase, and phospholipase C and in its action as an osmoprotectant in Pseudomonas aeruginosa.
    Lucchesi GI; Lisa TA; Casale CH; Domenech CE
    Curr Microbiol; 1995 Jan; 30(1):55-60. PubMed ID: 7765884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reduction of ubiquinone by sarcosine dehydrogenase system.
    Drabikowska AK
    Acta Biochim Pol; 1967; 14(2):241-7. PubMed ID: 4291509
    [No Abstract]   [Full Text] [Related]  

  • 17. Succinate-mediated catabolite repression control on the production of glycine betaine catabolic enzymes in Pseudomonas aeruginosa PAO1 under low and elevated salinities.
    Diab F; Bernard T; Bazire A; Haras D; Blanco C; Jebbar M
    Microbiology (Reading); 2006 May; 152(Pt 5):1395-1406. PubMed ID: 16622056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation and function of pyruvate kinase and malate enzyme in yeast.
    Fernández MJ; Medrano L; Ruiz-Amil M; Losada M
    Eur J Biochem; 1967 Dec; 3(1):11-8. PubMed ID: 5625036
    [No Abstract]   [Full Text] [Related]  

  • 19. Methylamine metabolism in a pseudomonas species.
    Bellion E; Hersh LB
    Arch Biochem Biophys; 1972 Nov; 153(1):368-74. PubMed ID: 4650618
    [No Abstract]   [Full Text] [Related]  

  • 20. Catabolite repression of malic dehydrogenase in Neurospora crassa.
    Zink MW
    Can J Microbiol; 1967 Sep; 13(9):1296-8. PubMed ID: 6054686
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.