These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4985262)

  • 1. Carbamyl phosphate biosynthesis in Bacillus subtilis.
    Issaly IM; Issaly AS; Reissig JL
    Biochim Biophys Acta; 1970 Mar; 198(3):482-94. PubMed ID: 4985262
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbamyl phosphate synthesis in Bacillus subtilis.
    Potvin B; Gooder H
    Biochem Genet; 1975 Feb; 13(1-2):125-43. PubMed ID: 237505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbamyl phosphate synthesis in a land snail, Strophocheilus oblongus.
    Tramell PR; Campbell JW
    J Biol Chem; 1970 Dec; 245(24):6634-41. PubMed ID: 4320609
    [No Abstract]   [Full Text] [Related]  

  • 4. Control of pyrimidine biosynthesis in human lymphocytes. Induction of glutamine-utilizing carbamyl phosphate synthetase and operation of orotic acid pathway during blastogenesis.
    Ito K; Uchino H
    J Biol Chem; 1971 Jun; 246(12):4060-5. PubMed ID: 5561474
    [No Abstract]   [Full Text] [Related]  

  • 5. Control of carbamyl phosphate synthesis in Salmonella typhimurium.
    Abd-el-Al A; Ingraham JL
    J Biol Chem; 1969 Aug; 244(15):4033-8. PubMed ID: 4895359
    [No Abstract]   [Full Text] [Related]  

  • 6. Control of pyrimidine biosynthesis in mammalian tissues. I. Partial purification and characterization of glutamine-utilizing carbamyl phosphate synthetase of mouse spleen and its tissue distribution.
    Tatibana M; Ito K
    J Biol Chem; 1969 Oct; 244(19):5403-13. PubMed ID: 5344144
    [No Abstract]   [Full Text] [Related]  

  • 7. Glutamine-dependent carbamyl phosphate synthetase. Properties and distribution in normal and neoplastic rat tissues.
    Yip MC; Knox WE
    J Biol Chem; 1970 May; 245(9):2199-204. PubMed ID: 5442268
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis.
    Paulus TJ; Switzer RL
    J Bacteriol; 1979 Jan; 137(1):82-91. PubMed ID: 216664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine-pyrimidine pathways in microorganisms.
    Reissig JL; Issaly AS; De Issaly IM
    Natl Cancer Inst Monogr; 1967 Nov; 27():259-71. PubMed ID: 4966970
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of activity of carbamoyl phosphate synthetase from mouse spleen.
    Levine RL; Hoogenraad NJ; Kretchmer N
    Biochemistry; 1971 Sep; 10(20):3694-9. PubMed ID: 5107007
    [No Abstract]   [Full Text] [Related]  

  • 11. ATP: glutamine synthetase adenylytransferase from Escherichia coli: purification and properties of a low-molecular weight enzyme form.
    Hennig SB; Ginsburg A
    Arch Biochem Biophys; 1971 Jun; 144(2):611-27. PubMed ID: 4328161
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli.
    Butterworth PH; Bloch K
    Eur J Biochem; 1970 Feb; 12(3):496-501. PubMed ID: 4392505
    [No Abstract]   [Full Text] [Related]  

  • 13. The enzymatic steps of pyrimidine biosynthesis in the unfertilized frog egg.
    Lan SJ; Sallach HJ; Cohen PP
    Biochemistry; 1969 Sep; 8(9):3673-80. PubMed ID: 5820662
    [No Abstract]   [Full Text] [Related]  

  • 14. Control of pyrimidine biosynthesis in mammalian tissues. IV. Requirements of a quantitative assay of glutamine-dependent carbamyl phosphate synthetase and effect of magnesium ion as an essential activator.
    Tatibana M; Shigesada K
    J Biochem; 1972 Sep; 72(3):537-47. PubMed ID: 4673760
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetic studies on rat liver carbamyl phosphate synthetase.
    Kerson LA; Appel SH
    J Biol Chem; 1968 Aug; 243(16):4279-85. PubMed ID: 5679964
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of the reactive sulfhydryl groups in carbamyl phosphate synthetase of Escherichia coli.
    Foley R; Poon J; Anderson PM
    Biochemistry; 1971 Nov; 10(24):4562-9. PubMed ID: 5003988
    [No Abstract]   [Full Text] [Related]  

  • 17. Control of transcarbamoylation in micro-organisms.
    Wiame JM; Stalon V; PiƩrard A; Messenguy F
    Symp Soc Exp Biol; 1973; 27():333-63. PubMed ID: 4594376
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethylmaleimide of carbamyl phosphate synthetase of Escherichia coli.
    Anderson PM; Marvin SV
    Biochemistry; 1970 Jan; 9(1):171-8. PubMed ID: 4903882
    [No Abstract]   [Full Text] [Related]  

  • 19. Two carbamyl phosphate synthetases of mammals: specific roles in control of pyrimidine and urea biosynthesis.
    Tatibana M; Shigesada K
    Adv Enzyme Regul; 1972; 10():249-71. PubMed ID: 4347313
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on inosine-5-phosphate dehydrogenase of Bacillus subtilis. Purification and general properties.
    Yokosawa H; Tobita T; Yamada T
    Biochim Biophys Acta; 1971 Mar; 227(3):538-53. PubMed ID: 4998714
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.