These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4987721)

  • 41. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins.
    Cabantchik ZI; Rothstein A
    J Membr Biol; 1974; 15(3):227-48. PubMed ID: 4838038
    [No Abstract]   [Full Text] [Related]  

  • 42. Evidence for the existence of separate transport mechanisms for choline and betaine in rat kidney.
    Sung CP; Johnstone RM
    Biochim Biophys Acta; 1969 Apr; 173(3):548-53. PubMed ID: 5769646
    [No Abstract]   [Full Text] [Related]  

  • 43. Studies on the partial reactions catalyzed by the (Na++K+)-activated ATPase. 3. Relation of K+-dependent p-nitrophenylphosphatase to Na+ transport in red cell ghosts.
    Askari A; Rao SN
    Biochim Biophys Acta; 1971 Jul; 241(1):75-88. PubMed ID: 4331046
    [No Abstract]   [Full Text] [Related]  

  • 44. The uncoupled extrusion of Na+ through the Na+ pump.
    Lew VL; Hardy MA; Ellory JC
    Biochim Biophys Acta; 1973 Oct; 323(2):251-66. PubMed ID: 4752285
    [No Abstract]   [Full Text] [Related]  

  • 45. [Therapeutic response to canrenone of patients with essential hypertension as a function of sodium transport anomalies and ouabain sensitivity of erythrocytes].
    Hannaert P; Laurent S; Girerd X; Safar M; Abitbol JP; Garay R
    Arch Mal Coeur Vaiss; 1989 Sep; 82(9):1603-7. PubMed ID: 2554840
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sugar transport in beef erythrocytes.
    Hoos RT; Tarpley HL; Regen DM
    Biochim Biophys Acta; 1972 Apr; 266(1):174-81. PubMed ID: 5041087
    [No Abstract]   [Full Text] [Related]  

  • 47. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. 8. The effect of membrane stabilizers on the transport of K + , Na + and glucose in muscle, adipocytes and erythrocytes.
    Clausen T; Harving H; Dahl-Hansen AB
    Biochim Biophys Acta; 1973 Mar; 298(2):393-411. PubMed ID: 4719137
    [No Abstract]   [Full Text] [Related]  

  • 48. [Effect of enzymes with proteolytic activity on glucide metabolism. II. Effect on blood sugar of normal subjects and diabetics of various types].
    Specchia G; Tavazzi L; Fratino P; Comeri G
    Boll Soc Ital Biol Sper; 1968 Feb; 44(4):229-31. PubMed ID: 5677855
    [No Abstract]   [Full Text] [Related]  

  • 49. Di- and triphosphoinositide metabolism in intact swine erythrocytes.
    Peterson SC; Kirschner LB
    Biochim Biophys Acta; 1970 Mar; 202(2):295-304. PubMed ID: 4315250
    [No Abstract]   [Full Text] [Related]  

  • 50. Variations of in vivo survival, acetylcholinesterase activity and sensitivity to acid lysis in human erythrocytes treated with proteolytic enzymes and neuraminidase.
    Perona G; Cortesi S; Xodo P; Scandellari C; Ghiotto G; De Sandre G
    Acta Isot (Padova); 1964 Nov; 4(3):287-95. PubMed ID: 5847896
    [No Abstract]   [Full Text] [Related]  

  • 51. Sodium transport and metabolism by erythrocytes of the dogfish shark.
    Bricker NS; Guerra L; Klahr S; Beauman W; Marchena C
    Am J Physiol; 1968 Aug; 215(2):383-8. PubMed ID: 5665172
    [No Abstract]   [Full Text] [Related]  

  • 52. Cation transport in erythrocytes of normal and porphyric cows: transmembrane fluxes of sodium and potassium.
    Keeton KS; Kaneko JJ
    Res Vet Sci; 1973 Nov; 15(3):285-92. PubMed ID: 4792008
    [No Abstract]   [Full Text] [Related]  

  • 53. The uptake and hydrolysis of p-nitrophenyl phosphate by red cells in relation to ATP hydrolysis by the sodium pump.
    Cotterrell D; Whittam R
    J Physiol; 1972 Jun; 223(3):773-802. PubMed ID: 4339904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. D-glucose uptake by isolated human erythrocyte membranes versus D-glucose transport by human erythrocytes. Comparison of the effects of proteolytic and phospholipase A 2 digestion.
    Kahlenberg A; Dolansky D; Rohrlick R
    J Biol Chem; 1972 Jul; 247(14):4572-6. PubMed ID: 5043855
    [No Abstract]   [Full Text] [Related]  

  • 55. Inhibition of choline transport by some neuromuscular blocking agents.
    Martin K
    J Physiol; 1969 Jan; 200(1):49P-50P. PubMed ID: 5761970
    [No Abstract]   [Full Text] [Related]  

  • 56. The effects of alterations in the external sodium concentration on human leucocyte sodium and potassium transport in vitro.
    Hilton PJ; Johnson VE; Jones RB; Patrick J
    J Cell Physiol; 1981 Nov; 109(2):323-32. PubMed ID: 7298732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Liberation of a bradykinin-like substance in the circulating blood of dogs by trypsin, chymotrypsin and nagarse.
    Ferreira SH; Rocha E Silva M
    Br J Pharmacol; 1969 Jul; 36(3):611-22. PubMed ID: 5789813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [On the effect of antibodies on ATPase activity and active Na-K-transport of E. Coli and human erythrocytes].
    Averdunk R; Günther T; Dorn F; Zimmermann U
    Z Naturforsch B; 1969 Jun; 24(6):693-8. PubMed ID: 4390016
    [No Abstract]   [Full Text] [Related]  

  • 59. Ion movements in human red cells independent of the sodium pump.
    Lubowitz H; Whittam R
    J Physiol; 1969 May; 202(1):111-31. PubMed ID: 4238987
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ouabain-insensitive active socium transport in erythrocytes: effect of external cation.
    Rettori O; Lenoir JP
    Am J Physiol; 1972 Apr; 222(4):880-4. PubMed ID: 5027097
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.