These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 4988287)

  • 21. Correlations between the medium's redox potential and the types of acetylcholine and adrenaline effect. I.
    Puppi A; Tigyi A; Szalay L
    Acta Physiol Acad Sci Hung; 1972; 41(2):199-205. PubMed ID: 4640710
    [No Abstract]   [Full Text] [Related]  

  • 22. [Sensitivity to adrenaline of the myocardial tissue differentiated in vitro from precardiac mesoderm].
    Renaud D; Le Douarin G
    Annee Biol; 1970; 9(5):325-34. PubMed ID: 5431534
    [No Abstract]   [Full Text] [Related]  

  • 23. [Comparative study of the action of acetylcholine on the transmembrane potentials of the contractile myocardial cells of the ventricles in adult and newborn guinea pigs].
    Kobrin VI; Ignatova ED; Klevtsov VA
    Fiziol Zh SSSR Im I M Sechenova; 1983 Sep; 69(9):1196-9. PubMed ID: 6641998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effects of adrenaline and gamma radiation on the active transport of sodium in frog skin].
    Lopez Zumel MC; Astudillo MD; Sanz F
    Arch Inst Farmacol Exp (Madr); 1969; 21(1):1-10. PubMed ID: 5404562
    [No Abstract]   [Full Text] [Related]  

  • 25. Membrane properties of aggregate of collagenase-dissociated rat heart cells.
    de Bruijne J; Jongsma HJ
    Adv Myocardiol; 1980; 1():231-42. PubMed ID: 6248936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analysis of the postnatal development of the action potential repolarization process in the working ventricular myocardium of albino rats (effect of tea, frequency, verapamil and adrenaline).
    Pucelík P; Králícek P; Barták F; Jezek K
    Physiol Bohemoslov; 1983; 32(5):419-29. PubMed ID: 6316383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The acceleration ballistocardiogram in relation to left ventricular flow in the baboon.
    Verdouw PD; Smith NT; Van Citters RL; Noordergraaf A
    Bibl Cardiol; 1971; ():Suppl 27:64-75. PubMed ID: 4998232
    [No Abstract]   [Full Text] [Related]  

  • 28. [Effect of acetylcholine, adrenaline, potassium chloride and calcium chloride on contraction of the left branch of the bundle of His with and without preservation of its functional connection with the left ventricle].
    Starinskiĭ IuG
    Biull Eksp Biol Med; 1972 Jul; 73(7):22-5. PubMed ID: 5047721
    [No Abstract]   [Full Text] [Related]  

  • 29. Investigations on the effects of deuteration on some functions of biological membranes.
    Vasilescu V; Mărgineanu D
    Rev Roum Physiol; 1971; 8(3):217-26. PubMed ID: 5317400
    [No Abstract]   [Full Text] [Related]  

  • 30. An analysis of factors operating at the cellular level to cause arrhythmias.
    Lu HH; Brooks CM
    J Electrocardiol; 1970; 3(2):111-5. PubMed ID: 5517059
    [No Abstract]   [Full Text] [Related]  

  • 31. [Changes in the duration of cardiac muscle fiber action potentials under the influence of acetylcholine].
    Babskiĭ EB; Makarychev VA; Raĭkhbaum EIa
    Dokl Akad Nauk SSSR; 1969 Aug; 187(5):1201-4. PubMed ID: 5397555
    [No Abstract]   [Full Text] [Related]  

  • 32. [Effect of acetylcholine and adrenaline on membrane currents in ventricular muscle (author's transl)].
    Ochi R
    Kokyu To Junkan; 1980 Oct; 28(10):1103-9. PubMed ID: 7221204
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of tetrodotoxin and low-sodium on action potential plateau of ventricular myocardium from neonatal and adult guinea-pigs.
    Agata N; Tanaka H; Shigenobu K
    Comp Biochem Physiol Comp Physiol; 1994 Mar; 107(3):459-61. PubMed ID: 7909732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Influence of cardioactive substances on electrophysiologic properties of frog auricle].
    Smejkal V
    J Physiol (Paris); 1969; 61 Suppl 2():406-7. PubMed ID: 5384930
    [No Abstract]   [Full Text] [Related]  

  • 35. [Action of isoprenaline on transmembranous ionic currents in the auricular myocardium of the frog].
    Driot P; Garnier D; Rougier O
    J Physiol (Paris); 1970; 62 Suppl 2(2):273-4. PubMed ID: 5484154
    [No Abstract]   [Full Text] [Related]  

  • 36. [Action of adrenaline and cAMP on the activity of a thermostable cytoplasmic inhibitor of Ca2+ ion transport across the mitochondrial membrane of the rat heart].
    Gaĭnutdinov MKh; Luchenko MB; Turakulov IaKh
    Dokl Akad Nauk SSSR; 1984; 278(2):475-8. PubMed ID: 6096104
    [No Abstract]   [Full Text] [Related]  

  • 37. [Action of adrenaline on the slow components of electric activity in frog heart].
    Vassort G; Coraboeuf E; Gargouïl YM
    J Physiol (Paris); 1968; 60 Suppl 2():564. PubMed ID: 5735061
    [No Abstract]   [Full Text] [Related]  

  • 38. Are increases in cyclic GMP levels responsible for the effects of acetylcholine on the transmembrane action potential of cat atrium?
    Diamond J; Ten Eick RE; Trapani AJ
    Proc West Pharmacol Soc; 1984; 27():27-30. PubMed ID: 6093131
    [No Abstract]   [Full Text] [Related]  

  • 39. [Cardiac effect of glucagon. Electrophysiologic measurements in the papillary muscle of the heart].
    Lüderitz B; Bolte HD
    Z Kreislaufforsch; 1971 Feb; 60(2):130-5. PubMed ID: 5123093
    [No Abstract]   [Full Text] [Related]  

  • 40. Response to adrenaline, acetylcholine and change of contraction frequency in early human foetal hearts.
    Gennser G; Nilsson E
    Experientia; 1970 Oct; 26(10):1105-7. PubMed ID: 5530062
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.