These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 4988787)

  • 21. Spontaneous unit activity in motor and somesthetic cortices during the sleep-wakefulness cycles in the monkey.
    Lamarre Y
    Electroencephalogr Clin Neurophysiol; 1969 Sep; 27(7):675-6. PubMed ID: 4187323
    [No Abstract]   [Full Text] [Related]  

  • 22. [The restructuring of the neuronal activity of the lateral hypothalamic preoptic area during the development of sleep].
    Suntsova NV; Burikov AA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(5):948-56. PubMed ID: 8560941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Relationship between recruiting responses and levels of awareness in cats. Analysis by a medical data processing computer].
    Ando J
    Seishin Shinkeigaku Zasshi; 1968 May; 70(5):393-418. PubMed ID: 4302426
    [No Abstract]   [Full Text] [Related]  

  • 24. [Dynamics of the neuronal activity of midbrain reticular nuclei in the sleep-wakefulness cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1984; 16(5):678-90. PubMed ID: 6514063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Reactivity of motor and somatosensory cortical neurons during wakefulness and natural sleep in monkeys].
    Steriade M; Lamarre Y
    J Physiol (Paris); 1969; 61 Suppl 2():411-2. PubMed ID: 4988790
    [No Abstract]   [Full Text] [Related]  

  • 26. [Dynamics of neuronal activity in the lateral preoptic area of hypothalamus in the course of sleep-waking cycle].
    Suntsova NV; Dergacheva OIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2002; 52(5):592-601. PubMed ID: 12449838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coalescence of sleep rhythms and their chronology in corticothalamic networks.
    Steriade M; Amzica F
    Sleep Res Online; 1998; 1(1):1-10. PubMed ID: 11382851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An analysis of the spontaneous activity of lateral geniculate neurons and of optic tract fibers in free moving cats.
    Mukhametov LM; Rizzolatti G; Seitun A
    Arch Ital Biol; 1970 Apr; 108(2):325-47. PubMed ID: 5493489
    [No Abstract]   [Full Text] [Related]  

  • 30. Unitary responses in somatic relay nuclei during sleep and wakefulness.
    Benoit O
    Brain Res; 1971 Aug; 31(2):373-4. PubMed ID: 5569168
    [No Abstract]   [Full Text] [Related]  

  • 31. Active neocortical processes during quiescent sleep.
    Steriade M
    Arch Ital Biol; 2001 Feb; 139(1-2):37-51. PubMed ID: 11256186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Spontaneous and rhythms spindles of the cat primary visual area during different stages of wakefulness and sleep].
    Lanoir J; Cordeau JP
    J Physiol (Paris); 1970; 62 Suppl 3():399-400. PubMed ID: 4995754
    [No Abstract]   [Full Text] [Related]  

  • 33. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats.
    Datta S; Siwek DF
    J Neurosci Res; 2002 Nov; 70(4):611-21. PubMed ID: 12404515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress.
    Trulson ME; Preussler DW
    Exp Neurol; 1984 Feb; 83(2):367-77. PubMed ID: 6692873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Activity pattern of the thalamic neurons].
    Nakahama H; Nishioka S; Otsuka T; Aikawa S
    Shinkei Kenkyu No Shimpo; 1966 Mar; 10(1):72-6. PubMed ID: 6008676
    [No Abstract]   [Full Text] [Related]  

  • 36. A possible role for nitric oxide at the sleep/wake interface.
    Cudeiro J; Rivadulla C; Grieve KL
    Sleep; 2000 Sep; 23(6):829-35. PubMed ID: 11007450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Discharge characteristics of the extralemniscal neurons of the somatic "relay" thalamic nuclei].
    Bava A; Fadiga E; Manzoni T
    Boll Soc Ital Biol Sper; 1967 Jun; 43(11):609-11. PubMed ID: 6073433
    [No Abstract]   [Full Text] [Related]  

  • 38. Sleeping cells in the human thalamus.
    Kiss ZH; Tsoukatos J; Tasker RR; Davis KD; Dostrovsky JO
    Stereotact Funct Neurosurg; 1995; 65(1-4):125-9. PubMed ID: 8916341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Electrophysiologic correlates of interaction between desynchronized and synchronized brain structures during sleep and wakefulness].
    Romanov DA
    Fiziol Zh SSSR Im I M Sechenova; 1981 Mar; 67(3):364-70. PubMed ID: 7250414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.