These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4990472)

  • 1. Sequential synthesis of histidine-degrading enzymes in Bacillus subtilis.
    Kaminskas E; Magasanik B
    J Biol Chem; 1970 Jul; 245(14):3549-55. PubMed ID: 4990472
    [No Abstract]   [Full Text] [Related]  

  • 2. Induction and repression of the histidine-degrading enzymes of Bacillus subtilis.
    Chasin LA; Magasanik B
    J Biol Chem; 1968 Oct; 243(19):5165-78. PubMed ID: 4971350
    [No Abstract]   [Full Text] [Related]  

  • 3. Urocanase and N-formimino-L-glutamate formiminohydrolase of Bacillus subtilis, two enzymes of the histidine degradation pathway.
    Kaminskas E; Kimhi Y; Magasanik B
    J Biol Chem; 1970 Jul; 245(14):3536-44. PubMed ID: 4990470
    [No Abstract]   [Full Text] [Related]  

  • 4. Genetic basis of histidine degradation in Bacillus subtilis.
    Kimhi Y; Magasanik B
    J Biol Chem; 1970 Jul; 245(14):3545-8. PubMed ID: 4990471
    [No Abstract]   [Full Text] [Related]  

  • 5. The two operons of the histidine utilization system in Salmonella typhimurium.
    Smith GR; Magasanik B
    J Biol Chem; 1971 May; 246(10):3330-41. PubMed ID: 4930060
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic control of the histidine dissimilatory pathway in Pseudomonas putida.
    Leidigh BJ; Wheelis ML
    Mol Gen Genet; 1973 Feb; 120(3):201-10. PubMed ID: 4405673
    [No Abstract]   [Full Text] [Related]  

  • 7. Induction of histidine-degrading enzymes in protein-starved rats and regulation of histidine metabolism.
    Sahib MK; Murti CR
    J Biol Chem; 1969 Sep; 244(17):4730-4. PubMed ID: 4980115
    [No Abstract]   [Full Text] [Related]  

  • 8. THE MOLECULAR BASIS OF HISTIDASE INDUCTION IN BACILLUS SUBTILIS.
    HARTWELL LH; MAGASANIK B
    J Mol Biol; 1963 Oct; 7():401-20. PubMed ID: 14066617
    [No Abstract]   [Full Text] [Related]  

  • 9. Genetic and metabolic control of enzymes responsible for histidine degradation in Salmonella typhimurium. 4-imidazolone-5-propionate amidohydrolase and N-formimino-L-glutamate formiminohydrolase.
    Smith GR; Halpern YS; Magasanik B
    J Biol Chem; 1971 May; 246(10):3320-9. PubMed ID: 4930059
    [No Abstract]   [Full Text] [Related]  

  • 10. Relationship between transformation frequency and gene function in the histidine degrading enzymes of Bacillus subtilis.
    Cooper GM; Fox MS
    Biochem Biophys Res Commun; 1969 Mar; 34(6):777-83. PubMed ID: 4976265
    [No Abstract]   [Full Text] [Related]  

  • 11. THE MECHANISM OF HISTIDASE INDUCTION AND FORMATION IN BACILLUS SUBTILIS.
    HARTWELL LH; MAGASANIK B
    J Mol Biol; 1964 Oct; 10():105-19. PubMed ID: 14222883
    [No Abstract]   [Full Text] [Related]  

  • 12. Coarse and fine control of citrate synthase from Bacillus subtilis.
    Flechtner VR; Hanson RS
    Biochim Biophys Acta; 1969 Jul; 184(2):252-62. PubMed ID: 4980242
    [No Abstract]   [Full Text] [Related]  

  • 13. [Induced synthesis of histidase in Bacillus brevis var. G-B].
    Filippov VD; Shestakov SV
    Mikrobiologiia; 1966; 35(4):600-5. PubMed ID: 6002921
    [No Abstract]   [Full Text] [Related]  

  • 14. The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis.
    Leighton TJ; Doi RH
    J Biol Chem; 1971 May; 246(10):3189-95. PubMed ID: 4995746
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of glutamine synthetase from Bacillus subtilis by divalent cations, feedback inhibitors, and L-glutamine.
    Deuel TF; Prusiner S
    J Biol Chem; 1974 Jan; 249(1):257-64. PubMed ID: 4149044
    [No Abstract]   [Full Text] [Related]  

  • 16. Adaptive responses of mammalian histidine-degrading enzymes.
    Schirmer MD; Harper AE
    J Biol Chem; 1970 Mar; 245(5):1204-11. PubMed ID: 5417263
    [No Abstract]   [Full Text] [Related]  

  • 17. Chloramphenicol induces translation of the mRNA for a chloramphenicol-resistance gene in Bacillus subtilis.
    Duvall EJ; Lovett PS
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3939-43. PubMed ID: 3086871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite repression and nitrogen control of allantoin-degrading enzymes in Pseudomonas aeruginosa.
    Janssen DB; van der Drift C
    Antonie Van Leeuwenhoek; 1983 Nov; 49(4-5):501-8. PubMed ID: 6418068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The control of the enzymes degrading histidine and related imidazolyl derivates in Pseudomonas testosteroni.
    Coote JG; Hassall H
    Biochem J; 1973 Mar; 132(3):423-33. PubMed ID: 4146797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis.
    Atkinson MR; Wray LV; Fisher SH
    J Bacteriol; 1990 Sep; 172(9):4758-65. PubMed ID: 2118500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.