These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 4990762)

  • 1. Metabolic influences on tyrosine excretion in Bacillus subtilis.
    Champney WS; Jensen RA
    J Bacteriol; 1970 Oct; 104(1):351-9. PubMed ID: 4990762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-Tyrosine as a metabolic inhibitor of Bacillus subtilis.
    Champney WS; Jensen RA
    J Bacteriol; 1969 Apr; 98(1):205-14. PubMed ID: 4976465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular events in the growth inhibition of Bacillus subtilis by D-tyrosine.
    Champney WS; Jensen RA
    J Bacteriol; 1970 Oct; 104(1):107-16. PubMed ID: 4990758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross pathway regulation: effect of histidine on the synthesis and activity of enzymes of aromatic acid biosynthesis in Bacillus subtilis.
    Nester EW
    J Bacteriol; 1968 Nov; 96(5):1649-57. PubMed ID: 4973127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of aromatic acid biosynthesis in Bacillus subtilis: sequenial feedback inhibition.
    Nester EW; Jensen RA
    J Bacteriol; 1966 Apr; 91(4):1594-8. PubMed ID: 4956345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic interlock. The role of the subordinate type of enzyme in the regulation of a complex pathway.
    Kane JF; Stenmark SL; Calhoun DH; Jensen RA
    J Biol Chem; 1971 Jul; 246(13):4308-16. PubMed ID: 4996881
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulated enzymes of aromatic amino acid synthesis: control, isozymic nature, and aggregation in Bacillus subtilis and Bacillus licheniformis.
    Nasser D; Henderson G; Nester EW
    J Bacteriol; 1969 Apr; 98(1):44-50. PubMed ID: 4977689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The enzymology of prephenate dehydrogenase in Bacillus subtilis.
    Champney WS; Jensen RA
    J Biol Chem; 1970 Aug; 245(15):3763-70. PubMed ID: 4321765
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of enzyme synthesis in the aromatic amino acid pathway of Bacillus subtilus.
    Nester EW; Jensen RA; Nasser DS
    J Bacteriol; 1969 Jan; 97(1):83-90. PubMed ID: 4974400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point in Pseudomonas aeruginosa.
    Calhoun DH; Pierson DL; Jensen RA
    J Bacteriol; 1973 Jan; 113(1):241-51. PubMed ID: 4631707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression.
    Ohné M
    J Bacteriol; 1974 Mar; 117(3):1295-305. PubMed ID: 4205196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine biosynthesis and its regulation in Bacillus subtilis.
    Ponce-de-Leon MM; Pizer LI
    J Bacteriol; 1972 Jun; 110(3):895-904. PubMed ID: 4337849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repression of aromatic amino acid biosynthesis in Escherichia coli K-12.
    Brown KD; Somerville RL
    J Bacteriol; 1971 Oct; 108(1):386-99. PubMed ID: 4399341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common element in the repression control of enzymes of histidine and aromatic amino acid biosynthesis in Bacillus subtilus.
    Chapman LF; Nester EW
    J Bacteriol; 1968 Nov; 96(5):1658-63. PubMed ID: 4973128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic amino acid biosynthesis: gene-enzyme relationships in Bacillus subtilis.
    Nasser D; Nester EW
    J Bacteriol; 1967 Nov; 94(5):1706-14. PubMed ID: 4383672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-induced derepression of tryptophan biosynthesis in a tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis.
    Steinberg W
    J Bacteriol; 1974 Mar; 117(3):1023-34. PubMed ID: 4205189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of tyrosyl-transfer ribonucleic acid synthetase in Bacillus subtilis.
    Dale BA; Nester EW
    J Bacteriol; 1971 Oct; 108(1):586-8. PubMed ID: 5001208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of synthesis of alkaline phosphatase by deoxyribonucleic acid synthesis in a constitutive mutant of Bacillus subtilis.
    Hiraga S
    J Bacteriol; 1966 Jun; 91(6):2192-9. PubMed ID: 4957612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glutamate dehydrogenase in Bacillus subtilis.
    Kane JF; Wakim J; Fischer RS
    J Bacteriol; 1981 Dec; 148(3):1002-5. PubMed ID: 6118356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.