These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 4990762)
41. Repression of phenolic acid-synthesizing enzymes and its relation to iron uptake in Bacillus subtilis. Downer DN; Davis WB; Byers BR J Bacteriol; 1970 Jan; 101(1):181-7. PubMed ID: 4983647 [TBL] [Abstract][Full Text] [Related]
42. Excretion of alkaline phosphatase of Bacillus subtilis. Cashel M; Freese E Biochem Biophys Res Commun; 1964 Aug; 16(6):541-4. PubMed ID: 4959041 [No Abstract] [Full Text] [Related]
43. 2-Ketoglutarate and the regulation of aconitase and histidase formation in Bacillus subtilis. Fisher SH; Magasanik B J Bacteriol; 1984 Apr; 158(1):379-82. PubMed ID: 6143742 [TBL] [Abstract][Full Text] [Related]
44. The regulation of aconitase and isocitrate dehydrogenase in sporulation mutants of Bacillus subtilis. Fortnagel P Biochim Biophys Acta; 1970 Nov; 222(2):290-8. PubMed ID: 4992520 [No Abstract] [Full Text] [Related]
45. Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae. Byng GS; Whitaker RJ; Gherna RL; Jensen RA J Bacteriol; 1980 Oct; 144(1):247-57. PubMed ID: 7419490 [TBL] [Abstract][Full Text] [Related]
46. Phenotypes of pleiotropic-negative sporulation mutants of Bacillus subtilis. Brehm SP; Staal SP; Hoch JA J Bacteriol; 1973 Sep; 115(3):1063-70. PubMed ID: 4199504 [TBL] [Abstract][Full Text] [Related]
48. Evolutionary implications of different types of microbial enzymology for L-tyrosine biosynthesis. Jensen RA; Pierson DL Nature; 1975 Apr; 254(5502):667-71. PubMed ID: 123637 [TBL] [Abstract][Full Text] [Related]
49. Regulation of purine nucleotide synthesis in Bacillus subtilis. I. Enzyme repression by purine derivatives. Momose H; Nishikawa H; Shiio I J Biochem; 1966 Apr; 59(4):325-31. PubMed ID: 4959359 [No Abstract] [Full Text] [Related]
50. [Biosynthesis of phenylalanine and tyrosine in Flavobacteria]. Waldner-Sander S; Keller B; Keller E; Lingens F Hoppe Seylers Z Physiol Chem; 1983 Oct; 364(10):1467-73. PubMed ID: 6642432 [TBL] [Abstract][Full Text] [Related]
51. Analysis of a Bacillus subtilis proteinase mutant. Shoer R; Rappaport HP J Bacteriol; 1972 Feb; 109(2):575-83. PubMed ID: 4621679 [TBL] [Abstract][Full Text] [Related]
52. Metabolic interlock. The multi-metabolite control of prephenate dehydratase activity in Bacillus subtilis. Rebello JL; Jensen RA J Biol Chem; 1970 Aug; 245(15):3738-44. PubMed ID: 4992710 [No Abstract] [Full Text] [Related]
53. A single cyclohexadienyl dehydrogenase specifies the prephenate dehydrogenase and arogenate dehydrogenase components of the dual pathways to L-tyrosine in Pseudomonas aeruginosa. Xia TH; Jensen RA J Biol Chem; 1990 Nov; 265(32):20033-6. PubMed ID: 2123197 [TBL] [Abstract][Full Text] [Related]
54. Aromatic amino acid biosynthesis in Alcaligenes eutrophus H16. II. The isolation and characterization of mutants auxotrophic for phenylalanine and tyrosine. Friedrich B; Schlegel HG Arch Microbiol; 1975 Apr; 103(2):141-9. PubMed ID: 1156090 [TBL] [Abstract][Full Text] [Related]
55. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. Zalieckas JM; Wray LV; Fisher SH J Bacteriol; 1999 May; 181(9):2883-8. PubMed ID: 10217782 [TBL] [Abstract][Full Text] [Related]
56. Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. Boylan RJ; Mendelson NH; Brooks D; Young FE J Bacteriol; 1972 Apr; 110(1):281-90. PubMed ID: 4622900 [TBL] [Abstract][Full Text] [Related]
57. Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex. Fisher SH; Magasanik B J Bacteriol; 1984 Apr; 158(1):55-62. PubMed ID: 6425269 [TBL] [Abstract][Full Text] [Related]
58. Enzymological basis for growth inhibition by L-phenylalanine in the cyanobacterium Synechocystis sp. 29108. Hall GC; Jensen RA J Bacteriol; 1980 Dec; 144(3):1034-42. PubMed ID: 6108316 [TBL] [Abstract][Full Text] [Related]
59. Mutants of Escherichia coli with an altered tyrosyl-transfer ribonucleic acid synthetase. Schlesinger S; Nester EW J Bacteriol; 1969 Oct; 100(1):167-75. PubMed ID: 4898984 [TBL] [Abstract][Full Text] [Related]
60. Inactivation of aspartic transcarbamylase in sporulating Bacillus subtilis: demonstration of a requirement for metabolic energy. Waindle LM; Switzer RL J Bacteriol; 1973 May; 114(2):517-27. PubMed ID: 4196242 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]