These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4992522)

  • 1. Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacteria.
    Webb M
    Biochim Biophys Acta; 1970 Nov; 222(2):428-39. PubMed ID: 4992522
    [No Abstract]   [Full Text] [Related]  

  • 2. The mechanism of acquired resistance to Co2+ and Ni2+ in Gram-positive and Gram-negative bacteria.
    Webb M
    Biochim Biophys Acta; 1970 Nov; 222(2):440-6. PubMed ID: 4992523
    [No Abstract]   [Full Text] [Related]  

  • 3. The utilization of magnesium by certain Gram-positive and Gram-negative bacteria.
    Webb M
    J Gen Microbiol; 1966 Jun; 43(3):401-9. PubMed ID: 4960404
    [No Abstract]   [Full Text] [Related]  

  • 4. Permeation of manganese, cadmium, zinc, and beryllium through calcium channels of an insect muscle membrane.
    Fukuda J; Kawa K
    Science; 1977 Apr; 196(4287):309-11. PubMed ID: 847472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Zinc, copper, manganese, cadmium, cobalt and nickel content in the blood, organs and tumors in cancer patients].
    GUL'KO IS
    Vopr Onkol; 1961; 7(9)():46-51. PubMed ID: 13902899
    [No Abstract]   [Full Text] [Related]  

  • 6. REPORT- Role of metal ions on the catalytic efficiency of dextran hydrolyzing biocatalyst.
    Shahid F; Javed U; Aman A; Ul Qader SA
    Pak J Pharm Sci; 2019 Nov; 32(6):2761-2764. PubMed ID: 31969313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magneisum transport in Escherichia coli.
    Lusk JE; Kennedy EP
    J Biol Chem; 1969 Mar; 244(6):1653-5. PubMed ID: 4886311
    [No Abstract]   [Full Text] [Related]  

  • 8. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH.
    Fu CL; Maier RJ
    Appl Environ Microbiol; 1991 Dec; 57(12):3511-6. PubMed ID: 1785926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Sanitary bacteriological indicators of water pollution under the effect of the insecticide Dibutox (DNBF). II. Tricarbocylic acid cycle in E. coli and A. aerogenes].
    Finichiu M; Bălteanu E; Freund S
    J Hyg Epidemiol Microbiol Immunol; 1970; 14(4):513-9. PubMed ID: 4924335
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies of the role of catalytic and conformational metals in producing enzymatic activity in yeast enolase.
    Brewer JM; Collins KM
    J Inorg Biochem; 1980 Oct; 13(2):151-64. PubMed ID: 7000980
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of magnesium deficiency on ribosomal structure and function in certain Gram-positive and Gram-negative bacteria.
    Webb M
    Biochim Biophys Acta; 1970 Nov; 222(2):416-27. PubMed ID: 4992521
    [No Abstract]   [Full Text] [Related]  

  • 12. Expression of ZntA, a zinc-transporting P1-type ATPase, is specifically regulated by zinc and cadmium.
    Noll M; Lutsenko S
    IUBMB Life; 2000 Apr; 49(4):297-302. PubMed ID: 10995032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium transport in Escherichia coli. Inhibition by cobaltous ion.
    Nelson DL; Kennedy EP
    J Biol Chem; 1971 May; 246(9):3042-9. PubMed ID: 4928897
    [No Abstract]   [Full Text] [Related]  

  • 14. The influence of certain trace metals on bacterial growth and magnesium utilization.
    Webb M
    J Gen Microbiol; 1968 May; 51(3):325-35. PubMed ID: 4968620
    [No Abstract]   [Full Text] [Related]  

  • 15. Sporulation of Bacillus megaterium: roles of metal ions.
    Lee KY; Weinberg ED
    Microbios; 1971 Apr; 3(12):215-24. PubMed ID: 5005823
    [No Abstract]   [Full Text] [Related]  

  • 16. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli.
    Nies DH
    J Bacteriol; 1995 May; 177(10):2707-12. PubMed ID: 7751279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycine uptake in Escherichia coli. II. Glycine uptake, exchange, and metabolism by an isolated membrane preparation.
    Kaback HR; Stadtman ER
    J Biol Chem; 1968 Apr; 243(7):1390-400. PubMed ID: 4869559
    [No Abstract]   [Full Text] [Related]  

  • 18. Active transport of magnesium in escherichia coli.
    Silver S
    Proc Natl Acad Sci U S A; 1969 Mar; 62(3):764-71. PubMed ID: 4895213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transport of Zn2+, Co2+ and Ni2+ into yeast cells.
    Fuhrmann GF; Rothstein A
    Biochim Biophys Acta; 1968 Nov; 163(3):325-30. PubMed ID: 5721896
    [No Abstract]   [Full Text] [Related]  

  • 20. ZupT is a Zn(II) uptake system in Escherichia coli.
    Grass G; Wong MD; Rosen BP; Smith RL; Rensing C
    J Bacteriol; 2002 Feb; 184(3):864-6. PubMed ID: 11790762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.