These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4993243)

  • 1. Low-temperature (4-77 degrees K) spectroscopy of Anacystis: temperature dependence of energy transfer efficiency.
    Cho F; Govindjee
    Biochim Biophys Acta; 1970 Aug; 216(1):151-61. PubMed ID: 4993243
    [No Abstract]   [Full Text] [Related]  

  • 2. Lifetime of the excited state in vivo. I. Chlorophyll a in algae, at room and at liquid nitrogen temperatures; rate constants of radiationless deactivation and trapping.
    Mar T; Govindjee ; Singhal GS; Merkelo H
    Biophys J; 1972 Jul; 12(7):797-808. PubMed ID: 4624832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond energy transfer in Porphyridium cruentum and Anacystis nidulans.
    Brody SS; Treadwell C; Barber J
    Biophys J; 1981 Jun; 34(3):439-49. PubMed ID: 6788106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans: light stimulation of cold-induced phycobilisome detachment.
    Schreiber U
    Biochim Biophys Acta; 1980 Jul; 591(2):361-71. PubMed ID: 6772212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-temperature (4-77 degrees K) spectroscopy of Chlorella: temperature dependence of energy transfer efficiency.
    Cho F; Govindjee
    Biochim Biophys Acta; 1970 Aug; 216(1):139-50. PubMed ID: 5497182
    [No Abstract]   [Full Text] [Related]  

  • 6. Factors affecting energy transfer from phycobilisomes to thylakoids in Anacystis nidulans.
    Harnischfeger G; Codd GA
    Biochim Biophys Acta; 1978 Jun; 502(3):507-13. PubMed ID: 418809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold-induced uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans: antagonistic effects of monovalent and divalent cations, and of high and low pH.
    Schreiber U
    FEBS Lett; 1979 Nov; 107(1):4-9. PubMed ID: 115721
    [No Abstract]   [Full Text] [Related]  

  • 8. Light-induced changes in the fluorescence yield of chlorophyll a in Anacystis nidulans. I. Relationship of slow fluorescence changes with structural changes.
    Mohanty P; Govindjee
    Biochim Biophys Acta; 1973 Apr; 305(1):95-104. PubMed ID: 4198185
    [No Abstract]   [Full Text] [Related]  

  • 9. Photoacoustic spectroscopy of Anacystis nidulans. II. Characterization of pigment holochroms and thermal deactivation spectrum.
    Carpentier R; Larue B; Leblanc RM
    Arch Biochem Biophys; 1983 Apr; 222(2):411-5. PubMed ID: 6405696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of salts on C-phycocyanin.
    MacColl R; Berns DS; Koven NL
    Arch Biochem Biophys; 1971 Oct; 146(2):477-82. PubMed ID: 4329851
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins.
    Staleva H; Komenda J; Shukla MK; Šlouf V; Kaňa R; Polívka T; Sobotka R
    Nat Chem Biol; 2015 Apr; 11(4):287-91. PubMed ID: 25706339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature.
    Groot ML; Peterman EJ; van Stokkum IH; Dekker JP; van Grondelle R
    Biophys J; 1995 Jan; 68(1):281-90. PubMed ID: 7711252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Chromatic changes in the pigment mutants of Anacystis nidulans].
    Shestakov SV; Zhevner VD
    Mikrobiologiia; 1969; 38(1):118-25. PubMed ID: 4981270
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves.
    Goedheer JC
    Biochim Biophys Acta; 1969 Feb; 172(2):252-65. PubMed ID: 5775695
    [No Abstract]   [Full Text] [Related]  

  • 15. Spectral changes in membrane fragments and artificial liposomes of Anacystis induced by chilling.
    Brand JJ
    Arch Biochem Biophys; 1979 Apr; 193(2):385-91. PubMed ID: 111621
    [No Abstract]   [Full Text] [Related]  

  • 16. Spectral inhomogeneity of photosystem I and its influence on excitation equilibration and trapping in the cyanobacterium Synechocystis sp. PCC6803 at 77 K.
    Melkozernov AN; Lin S; Blankenship RE; Valkunas L
    Biophys J; 2001 Aug; 81(2):1144-54. PubMed ID: 11463655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy.
    Petrásek Z; Schmitt FJ; Theiss C; Huyer J; Chen M; Larkum A; Eichler HJ; Kemnitz K; Eckert HJ
    Photochem Photobiol Sci; 2005 Dec; 4(12):1016-22. PubMed ID: 16307116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer in an ANS-phycocyanin complex.
    Binder A; Deranleau DA; Zuber H
    FEBS Lett; 1972 Jun; 23(2):185-7. PubMed ID: 4628858
    [No Abstract]   [Full Text] [Related]  

  • 19. Biochemical studies on Anacystis nidulans during its synchronous growth.
    Venkatarman GS; Lorenzen H
    Arch Mikrobiol; 1969; 69(1):34-9. PubMed ID: 4988609
    [No Abstract]   [Full Text] [Related]  

  • 20. Excitation energy transfer in Anacystis nidulans.
    Csatorday K; Hammans JW; Goedheer JC
    Biochem Biophys Res Commun; 1978 Mar; 81(2):571-5. PubMed ID: 96822
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.