These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4993479)

  • 1. The electron-accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation-reduction titrations.
    Reinhammar BR; Vänngård TI
    Eur J Biochem; 1971 Feb; 18(4):463-8. PubMed ID: 4993479
    [No Abstract]   [Full Text] [Related]  

  • 2. The state of copper in stellacyanin and laccase from the lacquer tree Rhus vernicifera.
    Malmström BG; Reinhammar B; Vänngård T
    Biochim Biophys Acta; 1970 Apr; 205(1):48-57. PubMed ID: 4314765
    [No Abstract]   [Full Text] [Related]  

  • 3. Reduction of Rhus vernicifera laccase type 1 copper by substituted hydroquinones.
    Holwerda RA; Clemmer JD; Yoneda GS; McKerley BJ
    Bioinorg Chem; 1978; 8(3):255-65. PubMed ID: 148299
    [No Abstract]   [Full Text] [Related]  

  • 4. Spectroscopic differentiation of the electron-accepting sites in fungal laccase. Association of a near ultraviolet band with a two electron-accepting unit.
    Malkin R; Malmström BG; Vänngård T
    Eur J Biochem; 1969 Sep; 10(2):324-9. PubMed ID: 4309868
    [No Abstract]   [Full Text] [Related]  

  • 5. Nitrite reactivity of the binuclear copper site in T2D Rhus laccase: preparation of half met-NO2- T2D laccase and its correlation to half met-NO2- hemocyanin and tyrosinase.
    Spira DJ; Solomon EI
    Biochem Biophys Res Commun; 1983 Apr; 112(2):729-36. PubMed ID: 6303331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of laccase-catalyzed oxidations: kinetic evidence for the involvement of several electron-accepting sites in the enzyme.
    Malmström BG; Agrò AF; Antonini E
    Eur J Biochem; 1969 Jun; 9(3):383-91. PubMed ID: 4978609
    [No Abstract]   [Full Text] [Related]  

  • 7. The reaction of nitric oxid with Rhus vernicifera laccase.
    Rotilio G; Morpurgo L; Graziani MT; Brunori M
    FEBS Lett; 1975 Jun; 54(2):163-6. PubMed ID: 165976
    [No Abstract]   [Full Text] [Related]  

  • 8. Anaerobic oxidation-reduction titrations of fungal laccase. Evidence for several high potential electron-accepting sites.
    Fee JA; Malkin R; Malmström BG; Vänngård T
    J Biol Chem; 1969 Aug; 244(15):4200-7. PubMed ID: 4308170
    [No Abstract]   [Full Text] [Related]  

  • 9. Dependence on freezing of the geometry and redox potential of type 1 and type 2 copper sites of Japanese-lacquer-tree (Rhus vernicifera) laccase.
    Morpurgo L; Calabrese L; Desideri A; Rotilio G
    Biochem J; 1981 Feb; 193(2):639-42. PubMed ID: 6272712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of laccase and stellacyanin from Rhus vernicifera.
    Reinhammar B
    Biochim Biophys Acta; 1970 Apr; 205(1):35-47. PubMed ID: 4985785
    [No Abstract]   [Full Text] [Related]  

  • 11. Pulsed electron paramagnetic resonance studies of types I and II coper of Rhus vernicifera laccase and porcine ceruloplasmin.
    Mondoví B; Graziani MT; Mims WB; Oltzik R; Peisach J
    Biochemistry; 1977 Sep; 16(19):4198-202. PubMed ID: 197989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of electron transfer in laccase-catalysed reactions.
    Andréasson LE; Reinhammar B
    Biochim Biophys Acta; 1979 May; 568(1):145-56. PubMed ID: 221027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative titrations of Rhus vernicifera laccase and its specific interaction with hydrogen peroxide.
    Farver O; Goldberg M; Lancet D; Pecht I
    Biochem Biophys Res Commun; 1976 Nov; 73(2):494-500. PubMed ID: 136969
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetic studies of Rhus vernicifera laccase. Role of the metal centers in electron transfer.
    Andréasson LE; Reinhammar B
    Biochim Biophys Acta; 1976 Oct; 445(3):579-97. PubMed ID: 9990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of japanese-lacquer-tree (Rhus vernicifera) laccase depleted of type 2 copper(II). Involvement of type-2 copper(II) in the 330nm chromophore.
    Morpurgo L; Graziani MT; Finazzi-Agrò A; Rotilio G; Mondovì B
    Biochem J; 1980 May; 187(2):361-6. PubMed ID: 6446906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titrations with ferrocyanide of japanese-lacquer-tree (Rhus vernicifera) laccase and of the type 2 copper-depleted enzyme. Interrelation of the copper sites.
    Morpurgo L; Graziani MT; Desideri A; Rotilio G
    Biochem J; 1980 May; 187(2):367-70. PubMed ID: 6446907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substituent effects on the electron transfer reactivity of hydroquinones with laccase blue copper.
    Clemmer JD; Gilliland BL; Bartsch RA; Holwerda RA
    Biochim Biophys Acta; 1979 Jun; 568(2):307-20. PubMed ID: 158390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPR studies on the anaerobic reduction of fungal laccase. Evidence for participation of type 2 copper in the reduction mechanism.
    Brändén R; Reinhammar B
    Biochim Biophys Acta; 1975 Oct; 405(2):236-42. PubMed ID: 241411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast copper-thionein can reconstitute the Japanese-lacquer-tree (Rhus vernicifera) laccase from the Type 2-copper-depleted enzyme via a direct copper(I)-transfer mechanism.
    Morpurgo L; Hartmann HJ; Desideri A; Weser U; Rotilio G
    Biochem J; 1983 May; 211(2):515-7. PubMed ID: 6307284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective removal of type 2 copper from Rhus vernicifera laccase.
    Graziani MT; Morpurgo L; Rotilio G; Mondovì B
    FEBS Lett; 1976 Nov; 70(1):87-90. PubMed ID: 186327
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.