These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4993479)

  • 21. Stereochemistry of anion complexes of type 2 Cu(II) in Rhus vernicifera laccase. Analogy with superoxide dismutase and Cu(II) carbonic anhydrase.
    Desideri A; Morpurgo L; Rotilio G; Mondovì B
    FEBS Lett; 1979 Feb; 98(2):339-41. PubMed ID: 217736
    [No Abstract]   [Full Text] [Related]  

  • 22. Mechanistic studies of the reduction of Rhus vernicifera laccase by hydroquinone.
    Holwerda RA; Gray HB
    J Am Chem Soc; 1974 Sep; 96(19):6008-22. PubMed ID: 4213241
    [No Abstract]   [Full Text] [Related]  

  • 23. Magnetic susceptibility studies of laccase and oxyhemocyanin.
    Dooley DM; Scott RA; Ellinghaus J; Solomon EI; Gray HB
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3019-22. PubMed ID: 98765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of the reduction of Rhus vernicifera laccase by ferrocyanide ion.
    Holwerda RA; Gray HB
    J Am Chem Soc; 1975 Oct; 97(21):6036-41. PubMed ID: 126253
    [No Abstract]   [Full Text] [Related]  

  • 25. Co-operation of electron-accepting sites in oxygen reduction by oxidases.
    Malmström BG
    Biochem J; 1970 Apr; 117(2):15P-16P. PubMed ID: 4315976
    [No Abstract]   [Full Text] [Related]  

  • 26. Quantitative Cu(I) determination using X-ray absorption edge spectroscopy: oxidation of the reduced binuclear copper site in type 2 depleted Rhus laccase.
    Hahn JE; Co MS; Spira DJ; Hodgson KO; Solomon EI
    Biochem Biophys Res Commun; 1983 Apr; 112(2):737-45. PubMed ID: 6221724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intramolecular electron transfer in laccases.
    Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I
    FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic studies of Rhus vernicifera laccase. Evidence for multi-electron transfer and an oxygen intermediate in the reoxidation reaction.
    Andréasson LE; Brändén R; Reinhammar B
    Biochim Biophys Acta; 1976 Jul; 438(2):370-9. PubMed ID: 182231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An optical rotatory dispersion vestigation of fungal laccase.
    Bossa F; Rotilio G; Fasella P; Malmström BG
    Eur J Biochem; 1969 Sep; 10(2):395-8. PubMed ID: 4309872
    [No Abstract]   [Full Text] [Related]  

  • 30. Coordination chemical studies on metalloenzymes. Measurement of binding constant between apo-tyrosinase and copper ion.
    Kidani Y; Ohkuma K; Hirose J; Noji M
    Arch Biochem Biophys; 1980 Apr; 200(2):452-60. PubMed ID: 6776894
    [No Abstract]   [Full Text] [Related]  

  • 31. Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites.
    Augustine AJ; Kragh ME; Sarangi R; Fujii S; Liboiron BD; Stoj CS; Kosman DJ; Hodgson KO; Hedman B; Solomon EI
    Biochemistry; 2008 Feb; 47(7):2036-45. PubMed ID: 18197705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cuproproteins: a model and system derived from tricyanoaminopropene (TRIAP) and copper.
    Harris J; Ritchie K
    Ann N Y Acad Sci; 1969 Jan; 153(3):706-21. PubMed ID: 4310117
    [No Abstract]   [Full Text] [Related]  

  • 33. Kinetics of reconstitutioin of polyphenoloxidase from apoenzyme and copper.
    Kertesz D; Rotilio G; Brunori M; Zito R; Antonini E
    Biochem Biophys Res Commun; 1972 Dec; 49(5):1208-15. PubMed ID: 4345671
    [No Abstract]   [Full Text] [Related]  

  • 34. EPR spectra of type 3 copper centers in Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase.
    Sakurai T; Takahashi J
    Biochim Biophys Acta; 1995 Apr; 1248(2):143-8. PubMed ID: 7748896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 1H NMR of native and azide-inhibited laccase from Rhus vernicifera.
    Battistuzzi G; Di Rocco G; Leonardi A; Sola M
    J Inorg Biochem; 2003 Sep; 96(4):503-6. PubMed ID: 13678817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The reversible removal of one specific copper(II) from fungal laccase.
    Malkin R; Malmström BG; Vänngård T
    Eur J Biochem; 1969 Jan; 7(2):253-9. PubMed ID: 4303912
    [No Abstract]   [Full Text] [Related]  

  • 37. Preparation and characterization of a stable half met derivative of type 2 depleted Rhus laccase: exogenous ligand binding to the type 3 site.
    Spira DJ; Winkler ME; Solomon EI
    Biochem Biophys Res Commun; 1982 Jul; 107(2):721-6. PubMed ID: 6289841
    [No Abstract]   [Full Text] [Related]  

  • 38. Magnetic susceptibility of laccases and ceruloplasmin.
    Petersson L; Angström J; Ehrenberg A
    Biochim Biophys Acta; 1978 Oct; 526(2):311-7. PubMed ID: 214124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study on the interaction between Pd(II) and Rhus vernicifera laccase].
    Tu C; Liang H; Wang G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):524-6. PubMed ID: 12945281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction thermodynamics of the T1 Cu site in plant and fungal laccases.
    Battistuzzi G; Bellei M; Leonardi A; Pierattelli R; De Candia A; Vila AJ; Sola M
    J Biol Inorg Chem; 2005 Dec; 10(8):867-73. PubMed ID: 16231129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.