These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4994036)

  • 1. Amino acid-beta-naphthylamide uptake by Pseudomonas aeruginosa.
    Riley PS; Behal FJ
    J Bacteriol; 1971 Mar; 105(3):747-52. PubMed ID: 4994036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid- -naphthylamide hydrolysis by Pseudomonas aeruginosa arylamidase.
    Riley PS; Behal FJ
    J Bacteriol; 1971 Nov; 108(2):809-16. PubMed ID: 5001871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of allantoinase of Pseudomonas aeruginosa in vivo.
    Rijnierse VF; van der Drift C
    Arch Mikrobiol; 1974 Mar; 96(4):319-28. PubMed ID: 4209827
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of carbon or nitrogen starvation on amino acid transport in Pseudomonas aeruginosa.
    Kay WW; Gronlund AF
    J Bacteriol; 1969 Oct; 100(1):276-82. PubMed ID: 4981058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloramphenicol-resistant variants of Pseudomonas aeruginosa defective in amino acid transport.
    Irvin JE; Ingram JM
    Can J Biochem; 1980 Oct; 58(10):1165-71. PubMed ID: 6780163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of chloramphenicol into sensitive strains of Escherichia coli and Pseudomonas aeruginosa.
    Abdel-Sayed S
    J Antimicrob Chemother; 1987 Jan; 19(1):7-20. PubMed ID: 3104278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants in Pseudomonas aeruginosa.
    Calhoun DH; Jensen RA
    J Bacteriol; 1972 Jan; 109(1):365-72. PubMed ID: 4621628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of amino acid transport-negative mutants of Pseudomonas aeruginosa and cells with repressed transport activity.
    Kay WW; Gronlund AF
    J Bacteriol; 1969 Apr; 98(1):116-23. PubMed ID: 4977687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Naphthylamidases of Sarcina lutea.
    Behal FJ; Carter RT
    Can J Microbiol; 1971 Jan; 17(1):39-45. PubMed ID: 4995373
    [No Abstract]   [Full Text] [Related]  

  • 10. Transport systems for branched-chain amino acids in Pseudomonas aeruginosa.
    Hoshino T
    J Bacteriol; 1979 Sep; 139(3):705-12. PubMed ID: 113383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of N-formylmethionine into peptides by Pseudomonas aeruginosa extracts.
    Migita LK; Doi RH
    Biochim Biophys Acta; 1970 Jan; 199(1):248-55. PubMed ID: 4983994
    [No Abstract]   [Full Text] [Related]  

  • 12. Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa.
    Betz JL; Clarke PH
    J Gen Microbiol; 1972 Nov; 73(1):161-74. PubMed ID: 4631783
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of chloramphenicol and certain other drugs on the oxidation of aromatic amino acids by a strain of Pseudomonas aeruginosa.
    BERNHEIM F; DeTURK WE
    J Pharmacol Exp Ther; 1952 Jun; 105(2):246-51. PubMed ID: 14928227
    [No Abstract]   [Full Text] [Related]  

  • 14. Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa.
    Hoshino T; Kageyama M
    J Bacteriol; 1979 Jan; 137(1):73-81. PubMed ID: 83991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid transport in Pseudomonas aeruginosa.
    Kay WW; Gronlund AF
    J Bacteriol; 1969 Jan; 97(1):273-81. PubMed ID: 4974392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrimidine catabolism in Pseudomonas aeruginosa.
    Kim S; West TP
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):175-9. PubMed ID: 1903745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid pool formation in Pseudomonas aeruginosa.
    Kay WW; Gronlund AF
    J Bacteriol; 1969 Jan; 97(1):282-91. PubMed ID: 4974394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible and constitutive -galactosidase formation in cells recovering from protein synthesis inhibition.
    Soreq H; Kaplan R
    J Bacteriol; 1971 Dec; 108(3):1147-53. PubMed ID: 4945186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arylamidase activity of Salmonella species.
    Sheahan JP; Eitenmiller RR; Carpenter JA
    Appl Microbiol; 1975 Jun; 29(6):726-8. PubMed ID: 808165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of aromatic amino acids by Pseudomonas aeruginosa.
    Kay WW; Gronlund AF
    J Bacteriol; 1971 Mar; 105(3):1039-46. PubMed ID: 4994029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.