These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4994092)

  • 1. The iron-uptake system of Bacillus subtilis.
    Walsh BL; Warren RA
    Can J Microbiol; 1971 Feb; 17(2):175-7. PubMed ID: 4994092
    [No Abstract]   [Full Text] [Related]  

  • 2. The mechanism of iron uptake in Bacillus subtilis.
    Peters WJ; Warren RA
    Can J Microbiol; 1970 Dec; 16(12):1285-91. PubMed ID: 5000290
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of protein-functional-group reagents on D-gluconate transport in Bacillus subtilis.
    O'Sullivan MP; McKillen MN
    Biochem Soc Trans; 1976; 4(5):882-4. PubMed ID: 12060
    [No Abstract]   [Full Text] [Related]  

  • 4. Iron uptake in Salmonella typhimurium.
    Walsh BL; Warren RA
    Can J Microbiol; 1971 Feb; 17(2):213-6. PubMed ID: 4926794
    [No Abstract]   [Full Text] [Related]  

  • 5. Phenolic acids and iron transport in Bacillus subtilis.
    Peters WJ; Warren RA
    Biochim Biophys Acta; 1968 Sep; 165(2):225-32. PubMed ID: 4971642
    [No Abstract]   [Full Text] [Related]  

  • 6. Transport alterations in a phosphatidylethanolamine-deficient mutant of Bacillus subtilis.
    Beebe JL
    J Bacteriol; 1972 Feb; 109(2):939-42. PubMed ID: 4621689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repression of phenolic acid-synthesizing enzymes and its relation to iron uptake in Bacillus subtilis.
    Downer DN; Davis WB; Byers BR
    J Bacteriol; 1970 Jan; 101(1):181-7. PubMed ID: 4983647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential uptake of D-glucose by isolated human erythrocyte membranes.
    Kahlenberg A; Urman B; Dolansky D
    Biochemistry; 1971 Aug; 10(16):3154-62. PubMed ID: 5126931
    [No Abstract]   [Full Text] [Related]  

  • 9. The accumulation of phenolic acids and coproporphyrin by iron-deficient cultures of Bacillus subtilis.
    Peters WJ; Warren RA
    Can J Microbiol; 1970 Dec; 16(12):1179-85. PubMed ID: 5000286
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of sulfhydryl reagents on the ribosomes of Bacillus subtilis.
    Ranu RS; Kaji A
    J Bacteriol; 1971 Jul; 107(1):53-60. PubMed ID: 4998249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid transport in membrane vesicles of Bacillus subtilis.
    Konings WN; Freese E
    J Biol Chem; 1972 Apr; 247(8):2408-18. PubMed ID: 4401701
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the plasma membrane of Mycoplasma laidlawii. VI. Potassium transport.
    Cho HW; Morowitz HJ
    Biochim Biophys Acta; 1969 Jul; 183(2):295-303. PubMed ID: 5792242
    [No Abstract]   [Full Text] [Related]  

  • 13. Dicarboxylate omega-amidase of Bacillus subtilis-168: evidence for a membrane-associated form.
    Ramaley RF; Fernald N; DeVries T
    Arch Biochem Biophys; 1972 Nov; 153(1):88-94. PubMed ID: 4631108
    [No Abstract]   [Full Text] [Related]  

  • 14. Turnover of the cell wall of Bacillus subtilis W-23 during logarithmic growth.
    Mauck J; Glaser L
    Biochem Biophys Res Commun; 1970 May; 39(4):699-706. PubMed ID: 4992428
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of synthesis of 2,3-dihydroxybenzoic acid in Bacillus subtilis by iron and a biological secondary hydroxamate.
    Byers BR; Lankford CE
    Biochim Biophys Acta; 1968 Oct; 165(3):563-6. PubMed ID: 4982502
    [No Abstract]   [Full Text] [Related]  

  • 16. The effects of technical chlordane on growth and energy metabolism of Streptococcus faecalis and Mycobacterium phlei: a comparison with Bacillus subtilis.
    Widdus R; Trudgill PW; Turnell DC
    J Gen Microbiol; 1971 Nov; 69(1):23-31. PubMed ID: 4337270
    [No Abstract]   [Full Text] [Related]  

  • 17. The interrelation of polar lipids in bacterial membranes.
    Minnikin DE; Abdolrahimzadeh H; Baddiley J
    Biochim Biophys Acta; 1971 Dec; 249(2):651-5. PubMed ID: 5002559
    [No Abstract]   [Full Text] [Related]  

  • 18. [Active transport of sulfates in membranes isolated from Bacillus subtilis].
    Cacco G; Civelli G
    Boll Soc Ital Biol Sper; 1975 Feb; 51(3):106-11. PubMed ID: 807226
    [No Abstract]   [Full Text] [Related]  

  • 19. Changes in the membrane bound alkaline phosphatase of glucose and lactate grown vegetative cells of Bacillus subtilis SB15.
    Ghosh A; Ghosh BK
    Biochem Biophys Res Commun; 1972 Nov; 49(4):906-15. PubMed ID: 4629811
    [No Abstract]   [Full Text] [Related]  

  • 20. Chromosome-membrane association in Bacillus subtilis. I. DNA release from membrane fraction.
    Yamaguchi K; Murakami S; Yoshikawa H
    Biochem Biophys Res Commun; 1971 Sep; 44(6):1559-65. PubMed ID: 5003692
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.