These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 499500)
1. Phosphorylation coupled to H2 oxidation by chromatophores from Rhodopseudomonas capsulata. Paul F; Colbeau A; Vignais PM FEBS Lett; 1979 Oct; 106(1):29-33. PubMed ID: 499500 [No Abstract] [Full Text] [Related]
2. Light-induced oxygen reduction as a probe of electron transport between respiratory and photosynthetic components in membranes of Rhodopseudomonas capsulata. Zannoni D; Jasper P; Marrs B Arch Biochem Biophys; 1978 Dec; 191(2):625-31. PubMed ID: 742893 [No Abstract] [Full Text] [Related]
3. Inhibitor sensitivity of light-dependent oxygen reduction in chromatophores from wild-type and an oxidase-deficient mutant of Rhodopseudomonas capsulata. Bittan R; Hochman A; Yagil E; Carmeli C Arch Biochem Biophys; 1981 Jun; 209(1):276-83. PubMed ID: 7283441 [No Abstract] [Full Text] [Related]
4. Continuous monitoring, by mass spectrometry, of H2 production and recycling in Rhodopseudomonas capsulata. Jouanneau Y; Kelley BC; Berlier Y; Lespinat PA; Vignais PM J Bacteriol; 1980 Aug; 143(2):628-36. PubMed ID: 7009556 [TBL] [Abstract][Full Text] [Related]
5. A thermodynamic characterisation of the cytochromes of chromatophores from Rhodopseudomonas capsulata. Evans EH; Crofts AR Biochim Biophys Acta; 1974 Jul; 357(1):78-88. PubMed ID: 4369739 [No Abstract] [Full Text] [Related]
6. Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata. Klemme JH Z Naturforsch B; 1969 Jan; 24(1):67-76. PubMed ID: 4388881 [No Abstract] [Full Text] [Related]
7. Respiratory control and the basis of light-induced inhibition of respiration in chromatophores from Rhodopseudomonas capsulata. McCarthy JE; Ferguson SJ Biochem Biophys Res Commun; 1982 Aug; 107(4):1406-11. PubMed ID: 7138547 [No Abstract] [Full Text] [Related]
8. [Light-dependent pyridine nucleotide reduction with molecarhydrogen by subcellular photopigment particles from Rhodopseudomonas capsulata]. Klemme JH; Schlegel HG Z Naturforsch B; 1967 Aug; 22(8):899-900. PubMed ID: 4384771 [No Abstract] [Full Text] [Related]
9. Light-induced electron transport pathways in membrane preparations from Rhodopseudomonas capsulata. Hochman A; Gen-Hayyim G; Carmeli C Arch Biochem Biophys; 1977 Dec; 184(2):416-22. PubMed ID: 596882 [No Abstract] [Full Text] [Related]
10. Light-dependent reduction of nicotinamide adenine dinucleotide phosphate by chromatophores of Rhodopseudomonas spheroides. Orlando JA Arch Biochem Biophys; 1968 Mar; 124(1):413-7. PubMed ID: 4385595 [No Abstract] [Full Text] [Related]
11. Biochemical physiology of a respiration-deficient mutant of the photosynthetic bacterium Rhodopseudomonas capsulata. Marrs B; Stahl CL; Lien S; Gest H Proc Natl Acad Sci U S A; 1972 Apr; 69(4):916-20. PubMed ID: 4337246 [TBL] [Abstract][Full Text] [Related]
12. The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores of Rhodopseudomonas capsulata at different redox potentials. Baccarini-Melandri A; Melandri BA; Hauska G J Bioenerg Biomembr; 1979 Apr; 11(1-2):1-16. PubMed ID: 162342 [TBL] [Abstract][Full Text] [Related]
13. Cytochrome c2--reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata. Bowyer JR; Tierney GV; Crofts AR FEBS Lett; 1979 May; 101(1):207-12. PubMed ID: 221250 [No Abstract] [Full Text] [Related]
14. Secondary electron transfer in chromatophores of Rhodopseudomonas capsulata A1a pho. Binary out-of-phase oscillations in ubisemiauinone formation and cytochrome b50 reduction with consective light flashes. Bowyer JR; Tierney GV; Crofts AR FEBS Lett; 1979 May; 101(1):201-6. PubMed ID: 446736 [No Abstract] [Full Text] [Related]
15. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. Madigan MT; Gest H J Bacteriol; 1979 Jan; 137(1):524-30. PubMed ID: 216663 [TBL] [Abstract][Full Text] [Related]
16. Modification by immobilization of the microenvironment of chromatophores of Rhodopseudomonas capsulata. The influence on light-induced ADP phosphorylation coupled to cyclic electron transport. Garde VL; Gellf G; Thomas D Eur J Biochem; 1981 May; 116(2):337-9. PubMed ID: 7250130 [TBL] [Abstract][Full Text] [Related]
17. Energy transduction in photosynthetic bacteria. VI. Respiratory sites of energy conservation in membranes from dark-grown cells of Rhodopseudomonas capsulata. Baccarini Melandri A; Zannoni D; Melandri BA Biochim Biophys Acta; 1973 Sep; 314(3):298-311. PubMed ID: 4148029 [No Abstract] [Full Text] [Related]
18. [Nitrogenase and hydrogenase activities of the non-sulfur purple bacteria, Rhodopseudomonas spheroides and Rhodopseudomonas capsulata]. Serebriakova LT; Teslia EA; Gogotov IN; Kondrat'eva EN Mikrobiologiia; 1980; 49(3):401-7. PubMed ID: 6995815 [TBL] [Abstract][Full Text] [Related]
19. Cyclic photophosphorylation by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata. Klemme JH; Schlegel HG Arch Mikrobiol; 1968; 63(2):154-69. PubMed ID: 5703717 [No Abstract] [Full Text] [Related]
20. Reconstitution of photosynthetic electron transport and photophosphorylation in cytochrome-c2-deficient membrane preparation of Rhodopseudomonas capsulata. Hochman A; Carmeli C Arch Biochem Biophys; 1977 Feb; 179(1):349-59. PubMed ID: 190950 [No Abstract] [Full Text] [Related] [Next] [New Search]