These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 499576)

  • 1. Photoentrainment, pharmacology, and phase shifts of the circadian rhythm in the rat pineal.
    Zatz M
    Fed Proc; 1979 Nov; 38(12):2596-601. PubMed ID: 499576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraventricular carbachol mimics the effects of light on the circadian rhythm in the rat pineal gland.
    Zatz M; Brownstein MJ
    Science; 1979 Jan; 203(4378):358-61. PubMed ID: 32619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different mechanisms of phase delays and phase advances of the circadian rhythm in rat pineal N-acetyltransferase activity.
    Illnerová H; Vanĕcek J; Hoffmann K
    J Biol Rhythms; 1989; 4(2):187-200. PubMed ID: 2519588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pineal gland as a circadian oscillator in birds (author's transl)].
    Deguchi T
    Tanpakushitsu Kakusan Koso; 1982 Jan; 27(2):355-64. PubMed ID: 7041188
    [No Abstract]   [Full Text] [Related]  

  • 5. Retinal illumination phase shifts the circadian rhythm of serotonin N-acetyltransferase activity in the chicken pineal gland.
    Zawilska JB; Berezińska M; Lorenc A; Skene DJ; Nowak JZ
    Neurosci Lett; 2004 Apr; 360(3):153-6. PubMed ID: 15082156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injection of alpha-bungarotoxin near the suprachiasmatic nucleus blocks the effects of light on nocturnal pineal enzyme activity.
    Zatz M; Brownstein MJ
    Brain Res; 1981 Jun; 213(2):438-42. PubMed ID: 7248768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Regulation mechanism of melatonin rhythm in the pineal gland by light: experimental studies by in vivo microdialysis].
    Kanematsu N
    Hokkaido Igaku Zasshi; 1994 Jan; 69(1):46-64. PubMed ID: 8119657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity.
    Zatz M; Herkenham MA
    Brain Res; 1981 May; 212(1):234-8. PubMed ID: 7225860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian rhythm in pineal N-acetyltransferase activity: phase shifting by light pulses (I).
    Binkley S; Muller G; Hernandez T
    J Neurochem; 1981 Sep; 37(3):798-800. PubMed ID: 7276958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pineal gland biorhythms: N-acetyltransferase in chickens and rats.
    Binkley S
    Fed Proc; 1976 Oct; 35(12):2347-52. PubMed ID: 786737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural mechanisms for entrainment and generation of mammalian circadian rhythms.
    Rusak B
    Fed Proc; 1979 Nov; 38(12):2589-95. PubMed ID: 499575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of the retinohypothalamic tract in the photic-like effects of the serotonin agonist quipazine in the rat.
    Graff C; Kohler M; Pévet P; Wollnik F
    Neuroscience; 2005; 135(1):273-83. PubMed ID: 16084651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of various wave lengths of light and various duration of impulse times on suppression of n-acetyltransferase activity in the rat pineal gland].
    Jarmak A; Zawilska JB; Nowak JZ
    Klin Oczna; 1998; 100(2):77-80. PubMed ID: 9695540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors.
    Gannon RL; Millan MJ
    Neuroscience; 2006; 137(1):287-99. PubMed ID: 16289351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The search for circadian rhythm pacemakers in the light of lesion experiments.
    Kawamura H; Ibuka N
    Chronobiologia; 1978; 5(1):69-88. PubMed ID: 357115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology of avian circadian pacemakers.
    Takahashi JS; Menaker M
    Fed Proc; 1979 Nov; 38(12):2583-8. PubMed ID: 499574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats.
    Masubuchi S; Honma S; Abe H; Ishizaki K; Namihira M; Ikeda M; Honma K
    Eur J Neurosci; 2000 Dec; 12(12):4206-14. PubMed ID: 11122332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clonidine in vivo mimics the acute suppressive but not the phase-shifting effects of light on circadian rhythm of serotonin N-acetyltransferase activity in chick pineal gland.
    Zawilska JB
    J Pineal Res; 1994 Sep; 17(2):63-8. PubMed ID: 7869229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.